|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: deberta-v3-base-finetuned-3d-sentiment |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# deberta-v3-base-finetuned-3d-sentiment |
|
|
|
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.9369 |
|
- Accuracy: 0.8104 |
|
- Precision: 0.8132 |
|
- Recall: 0.8104 |
|
- F1: 0.8111 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 12762 |
|
- num_epochs: 7 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 0.7346 | 1.0 | 3190 | 0.6162 | 0.7666 | 0.7733 | 0.7666 | 0.7676 | |
|
| 0.4839 | 2.0 | 6380 | 0.5586 | 0.8013 | 0.8033 | 0.8013 | 0.8016 | |
|
| 0.416 | 3.0 | 9570 | 0.5250 | 0.8026 | 0.8044 | 0.8026 | 0.8019 | |
|
| 0.3501 | 4.0 | 12760 | 0.5294 | 0.8067 | 0.8068 | 0.8067 | 0.8053 | |
|
| 0.2661 | 5.0 | 15950 | 0.6626 | 0.8093 | 0.8127 | 0.8093 | 0.8094 | |
|
| 0.173 | 6.0 | 19140 | 0.7242 | 0.8093 | 0.8106 | 0.8093 | 0.8097 | |
|
| 0.1146 | 7.0 | 22330 | 0.9369 | 0.8104 | 0.8132 | 0.8104 | 0.8111 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.1 |
|
- Pytorch 1.13.1+cu117 |
|
- Datasets 2.10.1 |
|
- Tokenizers 0.13.3 |
|
|