tags: | |
- generated_from_trainer | |
metrics: | |
- accuracy | |
- recall | |
- precision | |
- f1 | |
model-index: | |
- name: NL_BERT_michelin_finetuned | |
results: [] | |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You | |
should probably proofread and complete it, then remove this comment. --> | |
# NL_BERT_michelin_finetuned | |
This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on an unknown dataset. | |
It achieves the following results on the evaluation set: | |
- Loss: 0.2675 | |
- Accuracy: 0.968 | |
- Recall: 0.1562 | |
- Precision: 0.5 | |
- F1: 0.2381 | |
- Mse: 0.032 | |
## Model description | |
More information needed | |
## Intended uses & limitations | |
More information needed | |
## Training and evaluation data | |
More information needed | |
## Training procedure | |
### Training hyperparameters | |
The following hyperparameters were used during training: | |
- learning_rate: 5e-05 | |
- train_batch_size: 8 | |
- eval_batch_size: 8 | |
- seed: 42 | |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 | |
- lr_scheduler_type: linear | |
- num_epochs: 3 | |
### Training results | |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 | Mse | | |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:-----:| | |
| 0.1078 | 1.0 | 125 | 0.2461 | 0.969 | 0.0312 | 1.0 | 0.0606 | 0.031 | | |
| 0.0258 | 2.0 | 250 | 0.2353 | 0.969 | 0.2188 | 0.5385 | 0.3111 | 0.031 | | |
| 0.0011 | 3.0 | 375 | 0.2675 | 0.968 | 0.1562 | 0.5 | 0.2381 | 0.032 | | |
### Framework versions | |
- Transformers 4.18.0 | |
- Pytorch 1.11.0+cu113 | |
- Datasets 2.1.0 | |
- Tokenizers 0.12.1 | |