callmesan's picture
End of training
15b46d7 verified
metadata
library_name: transformers
license: cc-by-4.0
base_model: l3cube-pune/indic-sentence-bert-nli
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: indic-sentence-bert-nli-roman-urdu-fine-grained
    results: []

indic-sentence-bert-nli-roman-urdu-fine-grained

This model is a fine-tuned version of l3cube-pune/indic-sentence-bert-nli on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7424
  • Accuracy: 0.7858
  • Precision: 0.7111
  • Recall: 0.6798
  • F1: 0.6906

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.1702 1.0 113 1.1398 0.5901 0.3936 0.3331 0.2566
0.9227 2.0 226 0.8477 0.7001 0.2670 0.3508 0.2990
0.8216 3.0 339 0.7744 0.7309 0.3829 0.4267 0.3918
0.6698 4.0 452 0.6684 0.7713 0.5727 0.5493 0.5269
0.6337 5.0 565 0.5499 0.8340 0.6059 0.6291 0.6115
0.5396 6.0 678 0.4947 0.8428 0.6067 0.6571 0.6247
0.469 7.0 791 0.4368 0.8756 0.7950 0.7254 0.7261
0.4571 8.0 904 0.3816 0.9105 0.8661 0.8083 0.8305
0.4099 9.0 1017 0.3544 0.9237 0.8699 0.8494 0.8558
0.3605 10.0 1130 0.3385 0.9256 0.8819 0.8436 0.8576

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0