|
--- |
|
library_name: transformers |
|
license: cc-by-4.0 |
|
base_model: l3cube-pune/indic-sentence-bert-nli |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: indic-sentence-bert-nli-roman-urdu-fine-grained |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# indic-sentence-bert-nli-roman-urdu-fine-grained |
|
|
|
This model is a fine-tuned version of [l3cube-pune/indic-sentence-bert-nli](https://huggingface.co/l3cube-pune/indic-sentence-bert-nli) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7424 |
|
- Accuracy: 0.7858 |
|
- Precision: 0.7111 |
|
- Recall: 0.6798 |
|
- F1: 0.6906 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 128 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 1.1702 | 1.0 | 113 | 1.1398 | 0.5901 | 0.3936 | 0.3331 | 0.2566 | |
|
| 0.9227 | 2.0 | 226 | 0.8477 | 0.7001 | 0.2670 | 0.3508 | 0.2990 | |
|
| 0.8216 | 3.0 | 339 | 0.7744 | 0.7309 | 0.3829 | 0.4267 | 0.3918 | |
|
| 0.6698 | 4.0 | 452 | 0.6684 | 0.7713 | 0.5727 | 0.5493 | 0.5269 | |
|
| 0.6337 | 5.0 | 565 | 0.5499 | 0.8340 | 0.6059 | 0.6291 | 0.6115 | |
|
| 0.5396 | 6.0 | 678 | 0.4947 | 0.8428 | 0.6067 | 0.6571 | 0.6247 | |
|
| 0.469 | 7.0 | 791 | 0.4368 | 0.8756 | 0.7950 | 0.7254 | 0.7261 | |
|
| 0.4571 | 8.0 | 904 | 0.3816 | 0.9105 | 0.8661 | 0.8083 | 0.8305 | |
|
| 0.4099 | 9.0 | 1017 | 0.3544 | 0.9237 | 0.8699 | 0.8494 | 0.8558 | |
|
| 0.3605 | 10.0 | 1130 | 0.3385 | 0.9256 | 0.8819 | 0.8436 | 0.8576 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.1 |
|
- Pytorch 2.4.0 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.20.0 |
|
|