licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
4829
import Base: isnan import DataFrames: DataFrame, ncol, convert export GLRM # TODO: identify categoricals automatically from PooledDataArray columns default_real_loss = HuberLoss default_bool_loss = LogisticLoss default_ord_loss = MultinomialOrdinalLoss function GLRM(df::DataFrame, k::Int; losses = Loss[], rx = QuadReg(.01), ry = QuadReg(.01), offset = true, scale = false, prob_scale = true, NaNs_to_Missing = true) if NaNs_to_Missing df = copy(df) NaNs_to_Missing!(df) end if losses == Loss[] # if losses not specified, identify ordinal, boolean and real columns # change the wal get_reals, etc work. #reals, real_losses = get_reals(df) #bools, bool_losses = get_bools(df) #ordinals, ordinal_losses = get_ordinals(df) #easier to use just one function for this usecase. reals, real_losses, bools, bool_losses, ordinals, ordinal_losses = get_loss_types(df) A = [df[:,reals] df[:,bools] df[:,ordinals]] labels = [names(df)[reals]; names(df)[bools]; names(df)[ordinals]] losses = [real_losses; bool_losses; ordinal_losses] else # otherwise require one loss function per column A = df ncol(df)==length(losses) ? labels = names(df) : error("please input one loss per column of dataframe") end # identify which entries in data frame have been observed (ie are not N/A) obs = observations(A) # initialize X and Y X = randn(k,size(A,1)) Y = randn(k,embedding_dim(losses)) # form model rys = Array{Regularizer}(undef, length(losses)) for i=1:length(losses) if isa(losses[i].domain, OrdinalDomain) && embedding_dim(losses[i])>1 #losses[i], MultinomialOrdinalLoss) || isa(losses[i], OrdisticLoss) rys[i] = OrdinalReg(copy(ry)) else rys[i] = copy(ry) end end glrm = GLRM(A, losses, rx, rys, k, obs=obs, X=X, Y=Y, offset=offset, scale=scale) # scale model so it really computes the MAP estimator of the parameters if prob_scale prob_scale!(glrm) end return glrm, labels end function get_loss_types(df::DataFrame) m,n = size(df) reals = fill(false,n) bools = fill(false,n) ordinals = fill(false,n) for j in 1:n # assuming there are no columns with *all* values missing. (which would make it a non-informative column) t = eltype(collect(skipmissing(df[:,j]))[1]) if(t == Float64) reals[j] = true elseif (t == Bool) bools[j] = true elseif (t == Int) || (t == Int32) || (t == Int64) ordinals[j] = true end end n1 = sum(reals) real_losses = Array{Loss}(undef, n1) for i=1:n1 real_losses[i] = default_real_loss() end n2 = sum(bools) bool_losses = Array{Loss}(undef, n2) for i in 1:n2 bool_losses[i] = default_bool_loss() end n3 = sum(ordinals) ord_idx = (1:size(df,2))[ordinals] maxs = zeros(n3,1) mins = zeros(n3,1) for j in 1:n3 col = df[:,ord_idx[j]] try maxs[j] = maximum(skipmissing(col)) mins[j] = minimum(skipmissing(col)) catch nothing end end # set losses and regularizers ord_losses = Array{Loss}(undef, n3) for i=1:n3 ord_losses[i] = default_ord_loss(Int(maxs[i])) end return reals,real_losses,bools,bool_losses,ordinals,ord_losses end function get_reals(df::DataFrame) m,n = size(df) reals = [typeof(df[:,i])<:AbstractArray{Float64,1} for i in 1:n] n1 = sum(reals) losses = Array{Loss}(undef, n1) for i=1:n1 losses[i] = default_real_loss() end return reals, losses end function get_bools(df::DataFrame) m,n = size(df) bools = [isa(df[:,i], AbstractArray{Bool,1}) for i in 1:n] n1 = sum(bools) losses = Array{Loss}(undef, n1) for i=1:n1 losses[i] = default_bool_loss() end return bools, losses end function get_ordinals(df::DataFrame) m,n = size(df) # there must be a better way to check types... ordinals = [(isa(df[:,i], AbstractArray{Int,1}) || isa(df[:,i], AbstractArray{Int32,1}) || isa(df[:,i], AbstractArray{Int64,1})) for i in 1:n] nord = sum(ordinals) ord_idx = (1:size(df,2))[ordinals] maxs = zeros(nord,1) mins = zeros(nord,1) for i in 1:nord col = df[:,ord_idx[i]] try maxs[i] = maximum(dropmissing(col)) mins[i] = minimum(dropmissing(col)) catch nothing end end # set losses and regularizers losses = Array{Loss}(undef, nord) for i=1:nord losses[i] = default_ord_loss(Int(maxs[i])) end return ordinals, losses end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
4509
import LinearAlgebra: size, axpy! import LinearAlgebra.BLAS: gemm! abstract type AbstractGLRM end export AbstractGLRM, GLRM, getindex, size, scale_regularizer! const ObsArray = Union{Array{Array{Int,1},1}, Array{UnitRange{Int},1}} ### GLRM TYPE mutable struct GLRM<:AbstractGLRM A # The data table losses::Array{Loss,1} # array of loss functions rx::Array{Regularizer,1} # Array of regularizers to be applied to each column of X ry::Array{Regularizer,1} # Array of regularizers to be applied to each column of Y k::Int # Desired rank observed_features::ObsArray # for each example, an array telling which features were observed observed_examples::ObsArray # for each feature, an array telling in which examples the feature was observed X::AbstractArray{Float64,2} # Representation of data in low-rank space. A ≈ X'Y Y::AbstractArray{Float64,2} # Representation of features in low-rank space. A ≈ X'Y end # usage notes: # * providing argument `obs` overwrites arguments `observed_features` and `observed_examples` # * offset and scale are *false* by default to avoid unexpected behavior # * convenience methods for calling are defined in utilities/conveniencemethods.jl function GLRM(A, losses::Array, rx::Array, ry::Array, k::Int; # the following tighter definition fails when you form an array of a tighter subtype than the abstract type, eg Array{QuadLoss,1} # function GLRM(A::AbstractArray, losses::Array{Loss,1}, rx::Array{Regularizer,1}, ry::Array{Regularizer,1}, k::Int; X = randn(k,size(A,1)), Y = randn(k,embedding_dim(losses)), obs = nothing, # [(i₁,j₁), (i₂,j₂), ... (iₒ,jₒ)] observed_features = fill(1:size(A,2), size(A,1)), # [1:n, 1:n, ... 1:n] m times observed_examples = fill(1:size(A,1), size(A,2)), # [1:m, 1:m, ... 1:m] n times offset = false, scale = false, checknan = true, sparse_na = true) # Check dimensions of the arguments m,n = size(A) if length(losses)!=n error("There must be as many losses as there are columns in the data matrix") end if length(rx)!=m error("There must be either one X regularizer or as many X regularizers as there are rows in the data matrix") end if length(ry)!=n error("There must be either one Y regularizer or as many Y regularizers as there are columns in the data matrix") end if size(X)!=(k,m) error("X must be of size (k,m) where m is the number of rows in the data matrix. This is the transpose of the standard notation used in the paper, but it makes for better memory management. \nsize(X) = $(size(X)), size(A) = $(size(A)), k = $k") end if size(Y)!=(k,embedding_dim(losses)) error("Y must be of size (k,d) where d is the sum of the embedding dimensions of all the losses. \n(1 for real-valued losses, and the number of categories for categorical losses).") end # Determine observed entries of data if obs==nothing && sparse_na && isa(A,SparseMatrixCSC) obs = findall(!iszero, A) # observed indices (list of CartesianIndices) end if obs==nothing # if no specified array of tuples, use what was explicitly passed in or the defaults (all) # println("no obs given, using observed_features and observed_examples") glrm = GLRM(A,losses,rx,ry,k, observed_features, observed_examples, X,Y) else # otherwise unpack the tuple list into arrays # println("unpacking obs into array") glrm = GLRM(A,losses,rx,ry,k, sort_observations(obs,size(A)...)..., X,Y) end # check to make sure X is properly oriented if size(glrm.X) != (k, size(A,1)) # println("transposing X") glrm.X = glrm.X' end # check none of the observations are NaN if checknan for i=1:size(A,1) for j=glrm.observed_features[i] if isnan(A[i,j]) error("Observed value in entry ($i, $j) is NaN.") end end end end if scale # scale losses (and regularizers) so they all have equal variance equilibrate_variance!(glrm) end if offset # don't penalize the offset of the columns add_offset!(glrm) end return glrm end parameter_estimate(glrm::GLRM) = (glrm.X, glrm.Y) function scale_regularizer!(glrm::GLRM, newscale::Number) mul!(glrm.rx, newscale) mul!(glrm.ry, newscale) return glrm end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
7964
# Supported domains: Real, Boolean, Ordinal, Periodic, Count # The purpose of domains is to be able to impute over different possible values of `a` regardless of # the loss that was used in the GLRM. The reason for doing this is to evaluate the performance of GLRMS. # For instance, let's say we use PCA (QuadLoss losses) to model a binary data frame (not the best idea). # In order to override the standard imputation with `impute(QuadLoss(), u)`, which assumes imputation over the reals, # we can use `impute(BoolDomain(), QuadLoss(), u)` and see which of {-1,1} is best. The reason we want to be able to # do this is to compare a baseline model (e.g. PCA) with a more logical model using heterogenous losses, # yet still give each model the same amount of information regarding how imputation should be done. # The domains themselves are defined in domains.jl # In order to accomplish this we define a series of domains that describe how imputation should be performed over # them. Each combination of domain and loss must have the following: # Methods: # `impute(D::my_Domain, l::my_loss_type, u::Float64) ::Float64` # Imputes aᵤ = argmin l(u,a) over the range of possible values of a. The range of # possible values of a should be implicitly or explicitly provided by `D`. # There should be an impute method for every combination of datatype and loss. # `error_metric(D::my_Domain, l::my_loss_type, u::Float64, a::Number) ::Float64` # First calls aᵤ = impute(l,u), then uses the type of `my_D` to pick a # good measure of error- either 1-0 misclassification or squared difference. # DataTypes are assigned to each column of the data and are not part of the low-rank model itself, they just serve # as a way to evaluate the performance of the low-rank model. export impute, error_metric, errors # function for general use roundcutoff(x,a::T,b::T) where T<:Number = T(min(max(round(x),a),b)) # Error metrics for general use squared_error(a_imputed::Number, a::Number) = (a_imputed-a)^2 misclassification(a_imputed::T, a::T) where T = float(!(a_imputed==a)) # return 0.0 if equal, 1.0 else # use the default loss domain imputation if no domain provided impute(l::Loss, u::Float64) = impute(l.domain, l, u) ########################################## REALS ########################################## # Real data can take values from ℜ impute(D::RealDomain, l::DiffLoss, u::Float64) = u # by the properties of any DiffLoss impute(D::RealDomain, l::PoissonLoss, u::Float64) = exp(u) impute(D::RealDomain, l::OrdinalHingeLoss, u::Float64) = roundcutoff(u, l.min, l.max) impute(D::RealDomain, l::LogisticLoss, u::Float64) = error("Logistic loss always imputes either +∞ or -∞ given a∈ℜ") function impute(D::RealDomain, l::WeightedHingeLoss, u::Float64) @warn("It doesn't make sense to use HingeLoss to impute data that can take values in ℜ") 1/u end function error_metric(D::RealDomain, l::Loss, u::Float64, a::Number) a_imputed = impute(D, l, u) squared_error(a_imputed, a) end ########################################## BOOLS ########################################## # Boolean data should take values from {-1,1} # sign of u impute(D::BoolDomain, l::ClassificationLoss, u::Float64) = u>=0 ? true : false # Evaluate w/ a=-1 and a=1 and see which is better according to that loss. # This is fast and works for any loss. impute(D::BoolDomain, l::Loss, u::Float64) = evaluate(l,u,false)<evaluate(l,u,true) ? false : true function error_metric(D::BoolDomain, l::Loss, u::Float64, a::Number) a_imputed = impute(D, l, u) misclassification(a_imputed, a) end ########################################## ORDINALS ########################################## # Ordinal data should take integer values ranging from `min` to `max` impute(D::OrdinalDomain, l::DiffLoss, u::Float64) = roundcutoff(u, D.min, D.max) impute(D::OrdinalDomain, l::PoissonLoss, u::Float64) = roundcutoff(exp(u), D.min , D.max) impute(D::OrdinalDomain, l::OrdinalHingeLoss, u::Float64) = roundcutoff(u, D.min, D.max) impute(D::OrdinalDomain, l::LogisticLoss, u::Float64) = u>0 ? D.max : D.min function impute(D::OrdinalDomain, l::WeightedHingeLoss, u::Float64) @warn("It doesn't make sense to use HingeLoss to impute ordinals") a_imputed = (u>0 ? ceil(1/u) : floor(1/u)) roundcutoff(a_imputed, D.min, D.max) end impute(D::OrdinalDomain, l::OrdisticLoss, u::AbstractArray) = argmin(u.^2) # MultinomialOrdinalLoss # l(u, a) = -log(p(u, a)) # = u[1] + ... + u[a-1] - u[a] - ... - u[end] + # log(sum_{a'}(exp(u[1] + ... + u[a'-1] - u[a'] - ... - u[end]))) # # so given u, # the most probable value a is the index of the first # positive entry of u function impute(D::OrdinalDomain, l::MultinomialOrdinalLoss, u::AbstractArray) enforce_MNLOrdRules!(u) eu = exp.(u) p = [1-eu[1], -diff(eu)..., eu[end]] return argmax(p) end # generic method function impute(D::OrdinalDomain, l::Loss, u::AbstractArray) (D.min:D.max)[argmin([evaluate(l, u, i) for i in D.min:D.max])] end function error_metric(D::OrdinalDomain, l::Loss, u::Float64, a::Number) a_imputed = impute(D, l, u) squared_error(a_imputed, a) end ########################################## CATEGORICALS ########################################## # Categorical data should take integer values ranging from 1 to `max` impute(D::CategoricalDomain, l::MultinomialLoss, u::Array{Float64}) = argmax(u) impute(D::CategoricalDomain, l::OvALoss, u::Array{Float64}) = argmax(u) function error_metric(D::CategoricalDomain, l::Loss, u::Array{Float64}, a::Number) a_imputed = impute(D, l, u) misclassification(a_imputed, a) end ########################################## PERIODIC ########################################## # Periodic data can take values from ℜ, but given a period T, we should have error_metric(a,a+T) = 0 # Since periodic data can take any real value, we can use the real-valued imputation methods impute(D::PeriodicDomain, l::Loss, u::Float64) = impute(RealDomain(), l, u) # When imputing a periodic variable, we restrict ourselves to the domain [0,T] pos_mod(T::Float64, x::Float64) = x>0 ? x%T : (x%T)+T # takes a value and finds its equivalent positive modulus function error_metric(D::PeriodicDomain, l::Loss, u::Float64, a::Number) a_imputed = impute(D, l, u) # remap both a and a_imputed to [0,T] to check for a ≡ a_imputed squared_error(pos_mod(D.T,a_imputed), pos_mod(D.T,a)) end ########################################## COUNTS ########################################## # Count data can take values over ℕ, which we approximate as {0, 1, 2 ... `max_count`} # Our approximation of ℕ is really an ordinal impute(D::CountDomain, l::Loss, u::Float64) = impute(OrdinalDomain(0,D.max_count), l, u) function error_metric(D::CountDomain, l::Loss, u::Float64, a::Number) a_imputed = impute(D, l, u) squared_error(a_imputed, a) end #################################################################################### # Use impute and error_metric over arrays function impute(domains::Array{DomainSubtype,1}, losses::Array{LossSubtype,1}, U::Array{Float64,2}) where {DomainSubtype<:Domain, LossSubtype<:Loss} m, d = size(U) n = length(losses) yidxs = get_yidxs(losses) A_imputed = Array{Number}(undef, (m, n)); for f in 1:n for i in 1:m if length(yidxs[f]) > 1 A_imputed[i,f] = impute(domains[f], losses[f], vec(U[i,yidxs[f]])) else A_imputed[i,f] = impute(domains[f], losses[f], U[i,yidxs[f]]) end end end return A_imputed end function impute(losses::Array{LossSubtype,1}, U::Array{Float64,2}) where LossSubtype<:Loss domains = Domain[l.domain for l in losses] impute(domains, losses, U) end function errors(domains::Array{Domain,1}, losses::Array{Loss,1}, U::Array{Float64,2}, A::AbstractArray ) err = zeros(size(A)) m,n = size(A) for j in 1:n for i in 1:m err[i,j] = error_metric(domains[j], losses[j], U[i,j], A[i,j]) end end return err end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
5129
import StatsBase: sample, wsample export init_kmeanspp!, init_svd!, init_nndsvd! import Arpack: svds # kmeans++ initialization, but with missing data # we make sure never to look at "unobserved" entries in A # so that models can be honestly cross validated, for example function init_kmeanspp!(glrm::GLRM) m,n = size(glrm.A) k = glrm.k possible_centers = Set(1:m) glrm.Y = randn(k,n) # assign first center randomly i = sample(1:m) setdiff!(possible_centers, i) glrm.Y[1,glrm.observed_features[i]] = glrm.A[i,glrm.observed_features[i]] # assign next centers one by one for l=1:k-1 min_dists_per_obs = zeros(m) for i in possible_centers d = zeros(l) for j in glrm.observed_features[i] for ll=1:l d[ll] += evaluate(glrm.losses[j], glrm.Y[ll,j], glrm.A[i,j]) end end min_dists_per_obs[i] = minimum(d)/length(glrm.observed_features[i]) end furthest_index = wsample(1:m,min_dists_per_obs) glrm.Y[l+1,glrm.observed_features[furthest_index]] = glrm.A[furthest_index,glrm.observed_features[furthest_index]] end return glrm end function init_svd!(glrm::GLRM; offset=true, scale=true, TOL = 1e-10) # only offset if the glrm model is offset offset = offset && typeof(glrm.rx) == lastentry1 # only scale if we also offset scale = scale && offset m,n = size(glrm.A) k = glrm.k # find spans of loss functions (for multidimensional losses) yidxs = get_yidxs(glrm.losses) d = maximum(yidxs[end]) # create a matrix representation of A with the same dimensions as X*Y # by expanding out all data types with embedding dimension greater than 1 if all(map(length, yidxs) .== 1) Areal = glrm.A # save time, but in this case we'll still have a DataFrame else Areal = zeros(m, d) for f=1:n if length(yidxs[f]) == 1 Areal[glrm.observed_examples[f], yidxs[f]] = glrm.A[glrm.observed_examples[f], f] else if isa(glrm.losses[f].domain, CategoricalDomain) levels = datalevels(glrm.losses[f]) for e in glrm.observed_examples[f] for ilevel in 1:length(levels) Areal[e, yidxs[f][ilevel]] = (glrm.A[e, f] == levels[ilevel] ? 1 : -1) end end elseif isa(glrm.losses[f].domain, OrdinalDomain) embed_dim = embedding_dim(glrm.losses[f]) mymean = mean(glrm.A[glrm.observed_examples[f], f]) levels = datalevels(glrm.losses[f]) for e in glrm.observed_examples[f] for ilevel in 1:(length(levels)-1) Areal[e, yidxs[f][ilevel]] = (glrm.A[e, f] > levels[ilevel] ? 1 : -1) end end else error("No default mapping to real valued matrix for domains of type $typeof(glrm.losses[f].domain)") end end end end # standardize A, respecting missing values means = zeros(d) stds = zeros(d) Astd = zeros(m, d) for f in 1:n for j in yidxs[f] nomissing = Areal[glrm.observed_examples[f],j] means[j] = mean(nomissing) if isnan(means[j]) means[j] = 1 end stds[j] = std(nomissing) if stds[j] < TOL || isnan(stds[j]) stds[j] = 1 end Astd[glrm.observed_examples[f],j] = Areal[glrm.observed_examples[f],j] .- means[j] end end if offset k -= 1 glrm.X[end,:] = 1 glrm.Y[end,:] = means if scale Astd = Astd ./ stds end if k <= 0 @warn("Using an offset on a rank 1 model fits *only* the offset. To fit an offset + 1 low rank component, use k=2.") return glrm end end # options for rescaling: # 1) scale Astd so its mean is the same as the mean of the observations Astd *= m*n/sum(map(length, glrm.observed_features)) # 2) scale columns inversely proportional to number of entries in them & so that column mean is same as mean of observations in it # intuition: noise in a dense column is low rank, so downweight dense columns # Astd *= diagm(m./map(length, glrm.observed_examples)) # 3) scale columns proportional to scale of regularizer & so that column mean is same as mean of observations in it # Astd *= diagm(m./map(scale, glrm.ry)) # ASVD = rsvd(Astd, k) - slower than built-in svds, and fails for sparse matrices ASVD = svds(Astd, nsv = k)[1] # initialize with the top k components of the SVD, # rescaling by the variances @assert(size(glrm.X, 1) >= k) @assert(size(glrm.X, 2) >= m) @assert(size(glrm.Y, 1) >= k) @assert(size(glrm.Y, 2) >= d) glrm.X[1:k,1:m] = Diagonal(sqrt.(ASVD.S))*ASVD.U' # recall X is transposed as per column major order. glrm.Y[1:k,1:d] = Diagonal(sqrt.(ASVD.S))*ASVD.Vt*Diagonal(stds) return glrm end include("initialize_nmf.jl")
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
1395
import NMF.nndsvd function init_nndsvd!(glrm::GLRM; scale::Bool=true, zeroh::Bool=false, variant::Symbol=:std, max_iters::Int=0) # NNDSVD initialization: # Boutsidis C, Gallopoulos E (2007). SVD based initialization: A head # start for nonnegative matrix factorization. Pattern Recognition m,n = size(glrm.A) # only initialize based on observed entries A_init = zeros(m,n) for i = 1:n A_init[glrm.observed_examples[i],i] = glrm.A[glrm.observed_examples[i],i] end # scale all columns by the Loss.scale parameter if scale for i = 1:n A_init[:,i] .*= glrm.losses[i].scale end end # run the first nndsvd initialization W,H = nndsvd(A_init, glrm.k, zeroh=zeroh, variant=variant) glrm.X = W' glrm.Y = H # If max_iters>0 do a soft impute for the missing entries of A. # Iterate: Estimate missing entries of A with W*H # Update (W,H) nndsvd estimate based on new A for iter = 1:max_iters # Update missing entries of A_init for j = 1:n for i = setdiff(1:m,glrm.observed_examples[j]) A_init[i,j] = dot(glrm.X[:,i],glrm.Y[:,j]) end end # Re-estimate W and H W,H = nndsvd(A_init, glrm.k, zeroh=zeroh, variant=variant) glrm.X = W' glrm.Y = H end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
25835
# Predefined loss functions # You may also implement your own loss by subtyping the abstract type Loss. # # Losses must have the following: # Fields: # `scale::Float64` # This field represents a scalar weight assigned to the loss function: w*l(u,a) # `domain::natural_Domain` # The "natural" domain that the loss function was meant to handle. E.g. BoolDomain for LogisticLoss, # RealDomain for QuadLoss, etc. # Other fields may be also be included to encode parameters of the loss function, encode the range or # set of possible values of the data, etc. # # Methods: # `my_loss_type(args..., scale=1.0::Float64; # domain=natural_Domain(args[range]...), kwargs...) ::my_loss_type` # Constructor for the loss type. The first few arguments are parameters for # which there isn't a rational default (a loss may not need any of these). # The last positional argument should be the scale, which should default to 1. # There must be a default domain which is a Domain, which may take arguments from # the list of positional arguments. Parameters besides the scale for which there are # reasonable defaults should be included as keyword arguments (there may be none). # `evaluate(l::my_loss_type, u::Float64, a::Number) ::Float64` # Evaluates the function l(u,a) where u is the approximation of a # `grad(l::my_loss_type, u::Float64, a::Number) ::Float64` # Evaluates the gradient of the loss at the given point (u,a) # In addition, loss functions should preferably implement methods: # `M_estimator(l::my_loss_type, a::AbstractArray) ::Float64` # Finds uₒ = argmin ∑l(u,aᵢ) which is the best single estimate of the array `a` # If `M_estimator` is not implemented, a live optimization procedure will be used when this function is # called in order to compute loss function scalings. The live optimization may be slow, so an analytic # implementation is preferable. # `impute(d::Domain, l::my_loss_type, u::Array{Float64})` (in impute_and_err.jl) # Finds a = argmin l(u,a), the most likely value for an observation given a parameter u import Base: *, convert import Optim: optimize, LBFGS # export Loss, # DiffLoss, ClassificationLoss, SingleDimLoss, # categories of Losses # QuadLoss, L1Loss, HuberLoss, QuantileLoss, # losses for predicting reals # PoissonLoss, # losses for predicting integers # HingeLoss, WeightedHingeLoss, LogisticLoss, # losses for predicting booleans # OrdinalHingeLoss, OrdisticLoss, MultinomialOrdinalLoss, BvSLoss, # losses for predicting ordinals # MultinomialLoss, OvALoss, # losses for predicting nominals (categoricals) # PeriodicLoss, # losses for predicting periodic variables # evaluate, grad, M_estimator, # methods on losses # avgerror, scale, mul!, *, # embedding_dim, get_yidxs, datalevels, domain abstract type Loss end # a DiffLoss is one in which l(u,a) = f(u-a) AND argmin f(x) = 0 # for example, QuadLoss(u,a)=(u-a)² and we can write f(x)=x² and x=u-a abstract type DiffLoss<:Loss end # a ClassificationLoss is one in which observed values are true = 1 or false = 0 = -1 AND argmin_a L(u,a) = u>=0 ? true : false abstract type ClassificationLoss<:Loss end # Single Dimensional losses are DiffLosses or ClassificationLosses, which allow optimized evaluate and grad functions const SingleDimLoss = Union{DiffLoss, ClassificationLoss} mul!(l::Loss, newscale::Number) = (l.scale = newscale; l) scale(l::Loss) = l.scale *(newscale::Number, l::Loss) = (newl = copy(l); mul!(newl, newscale)) *(l::Loss, newscale::Number) = (newl = copy(l); mul!(newl, newscale)) domain(l::Loss) = l.domain ### embedding dimensions: mappings from losses/columns of A to columns of Y # default number of columns # number of columns is higher for multidimensional losses embedding_dim(l::Loss) = 1 embedding_dim(l::Array{LossSubtype,1}) where LossSubtype<:Loss = sum(map(embedding_dim, l)) # find spans of loss functions (for multidimensional losses) function get_yidxs(losses::Array{LossSubtype,1}) where LossSubtype<:Loss n = length(losses) ds = map(embedding_dim, losses) d = sum(ds) featurestartidxs = cumsum(append!([1], ds)) # find which columns of Y map to which columns of A (for multidimensional losses) U = Union{UnitRange{Int}, Int} yidxs = Array{U}(undef, n) for f = 1:n if ds[f] == 1 yidxs[f] = featurestartidxs[f] else yidxs[f] = featurestartidxs[f]:featurestartidxs[f]+ds[f]-1 end end return yidxs end ### promote integers to floats if given as the argument u ## causes ambiguity warnings # evaluate(l::Loss, u::Number, a) = evaluate(l,convert(Float64,u),a) # grad(l::Loss, u::Number, a) = grad(l,convert(Float64,u),a) # evaluate{T<:Number}(l::Loss, u::Array{T,1}, a) = evaluate(l,convert(Array{Float64,1},u),a) # grad{T<:Number}(l::Loss, u::Array{T,1}, a) = grad(l,convert(Array{Float64,1},u),a) ### -1,0,1::Int are translated to Booleans if loss is not defined on numbers # convert(::Type{Bool}, x::Int) = x==1 ? true : (x==-1 || x==0) ? false : throw(InexactError("Bool method successfully overloaded by LowRankModels")) myBool(x::Int) = x==1 ? true : (x==-1 || x==0) ? false : throw(InexactError()) evaluate(l::ClassificationLoss, u::Float64, a::Int) = evaluate(l,u,myBool(a)) grad(l::ClassificationLoss, u::Float64, a::Int) = grad(l,u,myBool(a)) M_estimator(l::ClassificationLoss, a::AbstractArray{Int,1}) = M_estimator(l,myBool(a)) ### M-estimators # The following is the M-estimator for loss functions that don't have one defined. It's also useful # for checking that the analytic M_estimators are correct. To make sure this method is called instead # of the loss-specific method (should only be done to test), simply pass the third paramter `test`. # e.g. M_estimator(l,a) will call the implementation for l, but M_estimator(l,a,"test") will call the # general-purpose optimizing M_estimator. function M_estimator(l::Loss, a::AbstractArray; test="test") # the function to optimize over f = (u -> sum(map(ai->evaluate(l,u[1],ai), a))) # u is indexed because `optim` assumes input is a vector # the gradient of that function function g!(storage::Vector, u::Vector) # this is the format `optim` expects storage[1] = sum(map(ai->grad(l,u[1],ai), a)) end m = optimize(f, g!, [median(a)], LBFGS()).minimum[1] end # Uses uₒ = argmin ∑l(u,aᵢ) to find (1/n)*∑l(uₒ,aᵢ) which is the # average error incurred by using the estimate uₒ for every aᵢ function avgerror(l::Loss, a::AbstractArray) b = collect(skipmissing(a)) m = M_estimator(l,b) sum(map(ai->evaluate(l,m,ai),b))/length(b) end ## Losses: ########################################## QUADRATIC ########################################## # f: ℜxℜ -> ℜ mutable struct QuadLoss<:DiffLoss scale::Float64 domain::Domain end QuadLoss(scale=1.0::Float64; domain=RealDomain()) = QuadLoss(scale, domain) evaluate(l::QuadLoss, u::Float64, a::Number) = l.scale*(u-a)^2 grad(l::QuadLoss, u::Float64, a::Number) = 2*(u-a)*l.scale M_estimator(l::QuadLoss, a::AbstractArray) = mean(a) ########################################## L1 ########################################## # f: ℜxℜ -> ℜ mutable struct L1Loss<:DiffLoss scale::Float64 domain::Domain end L1Loss(scale=1.0::Float64; domain=RealDomain()) = L1Loss(scale, domain) evaluate(l::L1Loss, u::Float64, a::Number) = l.scale*abs(u-a) grad(l::L1Loss, u::Float64, a::Number) = sign(u-a)*l.scale M_estimator(l::L1Loss, a::AbstractArray) = median(a) ########################################## HUBER ########################################## # f: ℜxℜ -> ℜ mutable struct HuberLoss<:DiffLoss scale::Float64 domain::Domain crossover::Float64 # where QuadLoss loss ends and linear loss begins; =1 for standard HuberLoss end HuberLoss(scale=1.0::Float64; domain=RealDomain(), crossover=1.0::Float64) = HuberLoss(scale, domain, crossover) function evaluate(l::HuberLoss, u::Float64, a::Number) abs(u-a) > l.crossover ? (abs(u-a) - l.crossover + l.crossover^2)*l.scale : (u-a)^2*l.scale end grad(l::HuberLoss,u::Float64,a::Number) = abs(u-a)>l.crossover ? sign(u-a)*l.scale : (u-a)*l.scale M_estimator(l::HuberLoss, a::AbstractArray) = median(a) # a heuristic, not the true estimator ########################################## QUANTILE ########################################## # f: ℜxℜ -> ℜ # define (u)_+ = max(u,0), (u)_- = max(-u,0) so (u)_+ + (u)_- = |u| # f(u,a) = { quantile (a - u)_+ + (1-quantile) (a - u)_- # fits the `quantile`th quantile of the distribution mutable struct QuantileLoss<:DiffLoss scale::Float64 domain::Domain quantile::Float64 # fit the alphath quantile end QuantileLoss(scale=1.0::Float64; domain=RealDomain(), quantile=.5::Float64) = QuantileLoss(scale, domain, quantile) function evaluate(l::QuantileLoss, u::Float64, a::Number) diff = a-u diff > 0 ? l.scale * l.quantile * diff : - l.scale * (1-l.quantile) * diff end function grad(l::QuantileLoss,u::Float64,a::Number) diff = a-u diff > 0 ? -l.scale * l.quantile : l.scale * (1-l.quantile) end M_estimator(l::QuantileLoss, a::AbstractArray) = quantile(a, l.quantile) ########################################## PERIODIC ########################################## # f: ℜxℜ -> ℜ # f(u,a) = w * (1 - cos((a-u)*(2*pi)/T)) # this measures how far away u and a are on a circle of circumference T. mutable struct PeriodicLoss<:DiffLoss T::Float64 # the length of the period scale::Float64 domain::Domain end PeriodicLoss(T, scale=1.0::Float64; domain=PeriodicDomain(T)) = PeriodicLoss(T, scale, domain) evaluate(l::PeriodicLoss, u::Float64, a::Number) = l.scale*(1-cos((a-u)*(2*pi)/l.T)) grad(l::PeriodicLoss, u::Float64, a::Number) = -l.scale*((2*pi)/l.T)*sin((a-u)*(2*pi)/l.T) function M_estimator(l::PeriodicLoss, a::AbstractArray{Float64}) (l.T/(2*pi))*atan( sum(sin(2*pi*a/l.T)) / sum(cos(2*pi*a/l.T)) ) + l.T/2 # not kidding. # this is the estimator, and there is a form that works with weighted measurements (aka a prior on a) # see: http://www.tandfonline.com/doi/pdf/10.1080/17442507308833101 eq. 5.2 end ########################################## POISSON ########################################## # f: ℜxℕ -> ℜ # BEWARE: # 1) this is a reparametrized poisson: we parametrize the mean as exp(u) so that u can take any real value and still produce a positive mean # 2) THIS LOSS MAY CAUSE MODEL INSTABLITY AND DIFFICULTY FITTING. mutable struct PoissonLoss<:Loss scale::Float64 domain::Domain end PoissonLoss(max_count=2^31::Int; domain=CountDomain(max_count)::Domain) = PoissonLoss(1.0, domain) function evaluate(l::PoissonLoss, u::Float64, a::Number) l.scale*(exp(u) - a*u + (a==0 ? 0 : a*(log(a)-1))) # log(a!) ~ a==0 ? 0 : a*(log(a)-1) end grad(l::PoissonLoss, u::Float64, a::Number) = l.scale*(exp(u) - a) M_estimator(l::PoissonLoss, a::AbstractArray) = log(mean(a)) ########################################## ORDINAL HINGE ########################################## # f: ℜx{min, min+1... max-1, max} -> ℜ mutable struct OrdinalHingeLoss<:Loss min::Integer max::Integer scale::Float64 domain::Domain end OrdinalHingeLoss(m1, m2, scale=1.0::Float64; domain=OrdinalDomain(m1,m2)) = OrdinalHingeLoss(m1,m2,scale,domain) # this method should never be called directly but is needed to support copying OrdinalHingeLoss() = OrdinalHingeLoss(1, 10, 1.0, OrdinalDomain(1,10)) OrdinalHingeLoss(m2) = OrdinalHingeLoss(1, m2, 1.0, OrdinalDomain(1, m2)) function evaluate(l::OrdinalHingeLoss, u::Float64, a::Number) #a = round(a) if u > l.max-1 # number of levels higher than true level n = min(floor(u), l.max-1) - a loss = n*(n+1)/2 + (n+1)*(u-l.max+1) elseif u > a # number of levels higher than true level n = min(floor(u), l.max) - a loss = n*(n+1)/2 + (n+1)*(u-floor(u)) elseif u > l.min+1 # number of levels lower than true level n = a - max(ceil(u), l.min+1) loss = n*(n+1)/2 + (n+1)*(ceil(u)-u) else # number of levels higher than true level n = a - max(ceil(u), l.min+1) loss = n*(n+1)/2 + (n+1)*(l.min+1-u) end return l.scale*loss end function grad(l::OrdinalHingeLoss, u::Float64, a::Number) #a = round(a) if u > a # number of levels higher than true level n = min(ceil(u), l.max) - a g = n else # number of levels lower than true level n = a - max(floor(u), l.min) g = -n end return l.scale*g end M_estimator(l::OrdinalHingeLoss, a::AbstractArray) = median(a) ########################################## LOGISTIC ########################################## # f: ℜx{-1,1}-> ℜ mutable struct LogisticLoss<:ClassificationLoss scale::Float64 domain::Domain end LogisticLoss(scale=1.0::Float64; domain=BoolDomain()) = LogisticLoss(scale, domain) evaluate(l::LogisticLoss, u::Float64, a::Bool) = l.scale*log(1+exp(-(2a-1)*u)) grad(l::LogisticLoss, u::Float64, a::Bool) = (aa = 2a-1; -aa*l.scale/(1+exp(aa*u))) function M_estimator(l::LogisticLoss, a::AbstractArray{Bool,1}) d, N = sum(a), length(a) log(N + d) - log(N - d) # very satisfying end ########################################## WEIGHTED HINGE ########################################## # f: ℜx{-1,1} -> ℜ # f(u,a) = { w * max(1-a*u, 0) for a = -1 # = { c * w * max(1-a*u, 0) for a = 1 mutable struct WeightedHingeLoss<:ClassificationLoss scale::Float64 domain::Domain case_weight_ratio::Float64 # >1 for trues to have more confidence than falses, <1 for opposite end WeightedHingeLoss(scale=1.0; domain=BoolDomain(), case_weight_ratio=1.0) = WeightedHingeLoss(scale, domain, case_weight_ratio) HingeLoss(scale=1.0::Float64; kwargs...) = WeightedHingeLoss(scale; kwargs...) # the standard HingeLoss is a special case of WeightedHingeLoss function evaluate(l::WeightedHingeLoss, u::Float64, a::Bool) loss = l.scale*max(1-(2*a-1)*u, 0) if l.case_weight_ratio !==1. && a loss *= l.case_weight_ratio end return loss end function grad(l::WeightedHingeLoss, u::Float64, a::Bool) an = (2*a-1) # change to {-1,1} g = (an*u>=1 ? 0 : -an*l.scale) if l.case_weight_ratio !==1. && a g *= l.case_weight_ratio end return g end function M_estimator(l::WeightedHingeLoss, a::AbstractArray{Bool,1}) r = length(a)/length(filter(x->x>0, a)) - 1 if l.case_weight_ratio > r m = 1.0 elseif l.case_weight_ratio == r m = 0.0 else m = -1.0 end end ########################################## MULTINOMIAL ########################################## # f: ℜx{1, 2, ..., max-1, max} -> ℜ # f computes the (negative log likelihood of the) multinomial logit, # often known as the softmax function # f(u, a) = exp(u[a]) / (sum_{a'} exp(u[a'])) # = 1 / (sum_{a'} exp(u[a'] - u[a])) mutable struct MultinomialLoss<:Loss max::Integer scale::Float64 domain::Domain end MultinomialLoss(m, scale=1.0::Float64; domain=CategoricalDomain(m)) = MultinomialLoss(m,scale,domain) embedding_dim(l::MultinomialLoss) = l.max datalevels(l::MultinomialLoss) = 1:l.max # levels are encoded as the numbers 1:l.max # in Julia v0.4, argument u is a row vector (row slice of a matrix), which in julia is 2d # function evaluate(l::MultinomialLoss, u::Array{Float64,2}, a::Int) # this breaks compatibility with v0.4 function evaluate(l::MultinomialLoss, u::Array{Float64,1}, a::Int) sumexp = 0 # inverse likelihood of observation # computing soft max directly is numerically unstable # instead note logsumexp(a_j) = logsumexp(a_j - M) + M # and we'll pick a good big (but not too big) M M = maximum(u) - u[a] # prevents overflow for j in 1:length(u) sumexp += exp(u[j] - u[a] - M) end loss = log(sumexp) + M return l.scale*loss end # in Julia v0.4, argument u is a row vector (row slice of a matrix), which in julia is 2d # function grad(l::MultinomialLoss, u::Array{Float64,2}, a::Int) # this breaks compatibility with v0.4 function grad(l::MultinomialLoss, u::Array{Float64,1}, a::Int) g = zeros(size(u)) # Using some nice algebra, you can show g[a] = -1 # and g[b] = -1/sum_{a' \in S} exp(u[b] - u[a']) # the contribution of one observation to one entry of the gradient # is always between -1 and 0 for j in 1:length(u) M = maximum(u) - u[j] # prevents overflow sumexp = 0 for jp in 1:length(u) sumexp += exp(u[jp] - u[j] - M) end g[j] += exp(-M)/sumexp end return l.scale*g end ## we'll compute it via a stochastic gradient method ## with fixed step size function M_estimator(l::MultinomialLoss, a::AbstractArray) u = zeros(l.max)' for i = 1:length(a) ai = a[i] u -= .1*grad(l, u, ai) end return u end ########################################## One vs All loss ########################################## # f: ℜx{1, 2, ..., max-1, max} -> ℜ mutable struct OvALoss<:Loss max::Integer bin_loss::Loss scale::Float64 domain::Domain end OvALoss(m::Integer, scale::Float64=1.0; domain=CategoricalDomain(m), bin_loss::Loss=LogisticLoss(scale)) = OvALoss(m,bin_loss,scale,domain) OvALoss() = OvALoss(1) # for copying correctly embedding_dim(l::OvALoss) = l.max datalevels(l::OvALoss) = 1:l.max # levels are encoded as the numbers 1:l.max # in Julia v0.4, argument u is a row vector (row slice of a matrix), which in julia is 2d # function evaluate(l::OvALoss, u::Array{Float64,2}, a::Int) # this breaks compatibility with v0.4 function evaluate(l::OvALoss, u::Array{Float64,1}, a::Int) loss = 0 for j in 1:length(u) loss += evaluate(l.bin_loss, u[j], a==j) end return l.scale*loss end # in Julia v0.4, argument u is a row vector (row slice of a matrix), which in julia is 2d # function grad(l::OvALoss, u::Array{Float64,2}, a::Int) # this breaks compatibility with v0.4 function grad(l::OvALoss, u::Array{Float64,1}, a::Int) g = zeros(length(u)) for j in 1:length(u) g[j] = grad(l.bin_loss, u[j], a==j) end return l.scale*g end function M_estimator(l::OvALoss, a::AbstractArray) u = zeros(l.max) for j = 1:l.max u[j] = M_estimator(l.bin_loss, a==j) end return u end ########################################## Bigger vs Smaller loss ########################################## # f: ℜx{1, 2, ..., max-1} -> ℜ mutable struct BvSLoss<:Loss max::Integer bin_loss::Loss scale::Float64 domain::Domain end function BvSLoss(m::Integer, scale::Float64=1.0; domain=OrdinalDomain(1,m), bin_loss::Loss=LogisticLoss(scale)) @assert(m >= 2, error("Number of levels of ordinal variable must be at least 2; got $m.")) BvSLoss(m,bin_loss,scale,domain) end BvSLoss() = BvSLoss(10) # for copying correctly embedding_dim(l::BvSLoss) = l.max-1 datalevels(l::BvSLoss) = 1:l.max # levels are encoded as the numbers 1:l.max function evaluate(l::BvSLoss, u::Array{Float64,1}, a::Int) loss = 0 for j in 1:length(u) loss += evaluate(l.bin_loss, u[j], a>j) end return l.scale*loss end function grad(l::BvSLoss, u::Array{Float64,1}, a::Int) g = zeros(length(u)) for j in 1:length(u) g[j] = grad(l.bin_loss, u[j], a>j) end return l.scale*g end function M_estimator(l::BvSLoss, a::AbstractArray) u = zeros(l.max) for j = 1:l.max-1 u[j] = M_estimator(l.bin_loss, a.>j) end return u end ########################################## ORDERED LOGISTIC ########################################## # f: ℜx{1, 2, ..., max-1, max} -> ℜ # f computes the (negative log likelihood of the) multinomial logit, # often known as the softmax function # f(u, a) = exp(u[a]) / (sum_{a'} exp(u[a'])) mutable struct OrdisticLoss<:Loss max::Integer scale::Float64 domain::Domain end OrdisticLoss(m::Int, scale=1.0::Float64; domain=OrdinalDomain(1,m)) = OrdisticLoss(m,scale,domain) embedding_dim(l::OrdisticLoss) = l.max datalevels(l::OrdisticLoss) = 1:l.max # levels are encoded as the numbers 1:l.max function evaluate(l::OrdisticLoss, u::Array{Float64,1}, a::Int) diffusquared = u[a]^2 .- u.^2 M = maximum(diffusquared) invlik = sum(exp, (diffusquared .- M)) loss = M + log(invlik) return l.scale*loss end function grad(l::OrdisticLoss, u::Array{Float64,1}, a::Int) g = zeros(size(u)) # Using some nice algebra, you can show g[a] = 2*u[a] sumexp = sum(map(j->exp(- u[j]^2), 1:length(u))) for j in 1:length(u) diffusquared = u[j]^2 .- u.^2 M = maximum(diffusquared) invlik = sum(exp,(diffusquared .- M)) g[j] -= 2 * u[j] * exp(- M) / invlik end return l.scale*g end ## we'll compute it via a stochastic gradient method ## with fixed step size function M_estimator(l::OrdisticLoss, a::AbstractArray) u = zeros(l.max)' for i = 1:length(a) ai = a[i] u -= .1*grad(l, u, ai) end return u end #################### Multinomial Ordinal Logit ##################### # l: ℜ^{max-1} x {1, 2, ..., max-1, max} -> ℜ # l computes the (negative log likelihood of the) multinomial ordinal logit. # # the length of the first argument u is one less than # the number of levels of the second argument a, # since the entries of u correspond to the division between each level # and the one above it. # # XXX warning XXX # the documentation in the comment below this point is defunct # # To yield a sensible pdf, the entries of u should be increasing # (b/c they're basically the -log of the cdf at the boundary between each level) # # The multinomial ordinal logit corresponds to a likelihood p with # p(u, a > i) ~ exp(-u[i]), so # p(u, a) ~ exp(-u[1]) * ... * exp(-u[a-1]) * exp(u[a]) * ... * exp(u[end]) # = exp(- u[1] - ... - u[a-1] + u[a] + ... + u[end]) # and normalizing, # p(u, a) = p(u, a) / sum_{a'} p(u, a') # # So l(u, a) = -log(p(u, a)) # = u[1] + ... + u[a-1] - u[a] - ... - u[end] + # log(sum_{a'}(exp(u[1] + ... + u[a'-1] - u[a'] - ... - u[end]))) # # Inspection of this loss function confirms that given u, # the most probable value a is the index of the first # positive entry of u mutable struct MultinomialOrdinalLoss<:Loss max::Integer scale::Float64 domain::Domain end MultinomialOrdinalLoss(m::Int, scale=1.0::Float64; domain=OrdinalDomain(1,m)) = MultinomialOrdinalLoss(m,scale,domain) MultinomialOrdinalLoss() = MultinomialOrdinalLoss(10) # for copying embedding_dim(l::MultinomialOrdinalLoss) = l.max - 1 datalevels(l::MultinomialOrdinalLoss) = 1:l.max # levels are encoded as the numbers 1:l.max function enforce_MNLOrdRules!(u; TOL=1e-3) u[1] = min(-TOL, u[1]) for j=2:length(u) u[j] = min(u[j], u[j-1]-TOL) end u end # argument u is a row vector (row slice of a matrix), which in julia is 2d # todo: increase numerical stability function evaluate(l::MultinomialOrdinalLoss, u::Array{Float64,1}, a::Int) enforce_MNLOrdRules!(u) if a == 1 return -l.scale*log(exp(0) - exp(u[1])) # (log(1 - exp(u[a] - 1))) elseif a == l.max return -l.scale*u[a-1] else return -l.scale*log(exp(u[a-1]) - exp(u[a])) # (u[a-1] + log(1 - exp(u[a] - u[a-1]))) end end # argument u is a row vector (row slice of a matrix), which in julia is 2d function grad(l::MultinomialOrdinalLoss, u::Array{Float64,1}, a::Int) enforce_MNLOrdRules!(u) g = zeros(size(u)) if a == 1 g[1] = -exp(u[1])/(exp(0) - exp(u[1])) # g[1] = 1/(1 - exp(-u[1])) elseif a == l.max g[a-1] = 1 else # d = exp(u[a] - u[a-1]) # g[a] = d/(1-d) # g[a-1] = - g[a] - 1 g[a] = -exp(u[a])/(exp(u[a-1]) - exp(u[a])) g[a-1] = exp(u[a-1])/(exp(u[a-1]) - exp(u[a])) end return -l.scale*g end ## we'll compute it via a stochastic gradient method ## with fixed step size ## (we don't need a hyper accurate estimate for this) function M_estimator(l::MultinomialOrdinalLoss, a::AbstractVector) u = zeros(l.max-1)' for i = 1:length(a) ai = a[i] u -= .1*grad(l, u, ai) end return u end ### convenience methods for evaluating and computing gradients on vectorized arguments function evaluate(l::Loss, u::Array{Float64,1}, a::AbstractVector) @assert size(u) == size(a) out = 0 for i=1:length(a) out += evaluate(l, u[i], a[i]) end return out end #Optimized vector evaluate on single-dimensional losses function evaluate(l::SingleDimLoss, u::Vector{Float64}, a::AbstractVector) losseval = (x::Float64, y::Number) -> evaluate(l, x, y) mapped = fill!(similar(u),0.) map!(losseval, mapped, u, a) reduce(+, mapped) end # now for multidimensional losses function evaluate(l::Loss, u::Array{Float64,2}, a::AbstractVector) # @show size(u,1) # @show size(a) @assert size(u,1) == length(a) out = 0 for i=1:length(a) out += evaluate(l, u[i,:], a[i]) end return out end function grad(l::Loss, u::Array{Float64,1}, a::AbstractVector) @assert size(u) == size(a) mygrad = zeros(size(u)) for i=1:length(a) mygrad[i] = grad(l, u[i], a[i]) end return mygrad end # Optimized vector grad on single-dimensional losses function grad(l::SingleDimLoss, u::Vector{Float64}, a::AbstractVector) lossgrad = (x::Float64,y::Number) -> grad(l, x, y) mapped = fill!(similar(u),0.) map!(lossgrad, mapped, u, a) end # now for multidimensional losses function grad(l::Loss, u::Array{Float64,2}, a::AbstractVector) @assert size(u,1) == length(a) mygrad = zeros(size(u)) for i=1:length(a) mygrad[i,:] = grad(l, u[i,:], a[i]) end return mygrad end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
3669
export sort_observations, add_offset!, fix_latent_features!, equilibrate_variance!, prob_scale! ### OBSERVATION TUPLES TO ARRAYS function sort_observations(obs::Union{Array{CartesianIndex{2},1},Array{Tuple{Int,Int},1}}, m::Int, n::Int; check_empty=false) observed_features = Array{Int,1}[Int[] for i=1:m] observed_examples = Array{Int,1}[Int[] for j=1:n] for obsij in obs i,j = obsij[1], obsij[2] push!(observed_features[i],j) push!(observed_examples[j],i) end if check_empty && (any(map(x->length(x)==0,observed_examples)) || any(map(x->length(x)==0,observed_features))) error("Every row and column must contain at least one observation") end return observed_features, observed_examples end ### SCALINGS AND OFFSETS ON GLRM function add_offset!(glrm::AbstractGLRM) glrm.rx, glrm.ry = map(lastentry1, glrm.rx), map(lastentry_unpenalized, glrm.ry) return glrm end function fix_latent_features!(glrm::AbstractGLRM, n) glrm.ry = Regularizer[fixed_latent_features(glrm.ry[i], glrm.Y[1:n,i]) for i in 1:length(glrm.ry)] return glrm end ## equilibrate variance # scale all columns inversely proportional to mean value of loss function # makes sense when all loss functions used are nonnegative function equilibrate_variance!(glrm::AbstractGLRM, columns_to_scale = 1:size(glrm.A,2)) for i in columns_to_scale nomissing = glrm.A[glrm.observed_examples[i],i] if length(nomissing)>0 varlossi = avgerror(glrm.losses[i], nomissing) varregi = var(nomissing) # TODO make this depend on the kind of regularization; this assumes QuadLoss else varlossi = 1 varregi = 1 end if varlossi > 0 # rescale the losses and regularizers for each column by the inverse of the empirical variance mul!(glrm.losses[i], scale(glrm.losses[i])/varlossi) end if varregi > 0 mul!(glrm.ry[i], scale(glrm.ry[i])/varregi) end end return glrm end ## probabilistic scaling # scale loss function to fit -loglik of joint distribution # makes sense when all functions used are -logliks of sensible distributions # todo: option to scale to account for nonuniform sampling in rows or columns or both # skipmissing(Array with missing) gives an iterator. function prob_scale!(glrm, columns_to_scale = 1:size(glrm.A,2)) for i in columns_to_scale nomissing = glrm.A[glrm.observed_examples[i],i] if typeof(glrm.losses[i]) == QuadLoss && length(nomissing) > 0 varlossi = var(skipmissing(glrm.A[:,i])) # estimate the variance if varlossi > TOL mul!(glrm.losses[i], 1/(2*varlossi)) # this is the correct -loglik of gaussian with variance fixed at estimate else @warn("column $i has a variance of $varlossi; not scaling it to avoid dividing by zero.") end elseif typeof(glrm.losses[i]) == HuberLoss && length(nomissing) > 0 varlossi = avgerror(glrm.losses[i], glrm.A[:,i]) # estimate the width of the distribution if varlossi > TOL mul!(glrm.losses[i], 1/(2*varlossi)) # this is not the correct -loglik of huber with estimates for variance and mean of poisson, but that's probably ok else @warn("column $i has a variance of $varlossi; not scaling it to avoid dividing by zero.") end else # none of the other distributions have any free parameters to estimate, so this is the correct -loglik mul!(glrm.losses[i], 1) end end return glrm end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
615
#module Plot import Gadfly import DataFrames: DataFrame export plot function plot(df::DataFrame, xs::Symbol, ys::Array{Symbol, 1}; scale = :linear, filename=None, height=3, width=6) dflong = vcat(map(l->stack(df,l,xs),ys)...) if scale ==:log p = Gadfly.plot(dflong,x=xs,y=:value,color=:variable,Gadfly.Scale.y_log10) else p = Gadfly.plot(dflong,x=xs,y=:value,color=:variable) end if !(filename==None) println("saving figure in $filename") Gadfly.draw(Gadfly.PDF(filename, width*Gadfly.inch, height*Gadfly.inch), p) end return p end #end # module
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
15806
# Predefined regularizers # You may also implement your own regularizer by subtyping # the abstract type Regularizer. # Regularizers should implement `evaluate` and `prox`. import Base: * export Regularizer, ProductRegularizer, # abstract types # concrete regularizers QuadReg, QuadConstraint, OneReg, ZeroReg, NonNegConstraint, NonNegOneReg, NonNegQuadReg, OneSparseConstraint, UnitOneSparseConstraint, SimplexConstraint, KSparseConstraint, lastentry1, lastentry_unpenalized, fixed_latent_features, FixedLatentFeaturesConstraint, fixed_last_latent_features, FixedLastLatentFeaturesConstraint, OrdinalReg, MNLOrdinalReg, RemQuadReg, # methods on regularizers prox!, prox, # utilities scale, mul!, * # numerical tolerance TOL = 1e-12 # regularizers # regularizers r should have the method `prox` defined such that # prox(r)(u,alpha) = argmin_x( alpha r(x) + 1/2 \|x - u\|_2^2) abstract type Regularizer end abstract type MatrixRegularizer <: LowRankModels.Regularizer end # default inplace prox operator (slower than if inplace prox is implemented) prox!(r::Regularizer,u::AbstractArray,alpha::Number) = (v = prox(r,u,alpha); @simd for i=1:length(u) @inbounds u[i]=v[i] end; u) # default scaling scale(r::Regularizer) = r.scale mul!(r::Regularizer, newscale::Number) = (r.scale = newscale; r) mul!(rs::Array{Regularizer}, newscale::Number) = (for r in rs mul!(r, newscale) end; rs) *(newscale::Number, r::Regularizer) = (newr = typeof(r)(); mul!(newr, scale(r)*newscale); newr) ## utilities function allnonneg(a::AbstractArray) for ai in a ai < 0 && return false end return true end ## Quadratic regularization mutable struct QuadReg<:Regularizer scale::Float64 end QuadReg() = QuadReg(1) prox(r::QuadReg,u::AbstractArray,alpha::Number) = 1/(1+2*alpha*r.scale)*u prox!(r::QuadReg,u::Array{Float64},alpha::Number) = rmul!(u, 1/(1+2*alpha*r.scale)) evaluate(r::QuadReg,a::AbstractArray) = r.scale*sum(abs2, a) ## constrained quadratic regularization ## the function r such that ## r(x) = inf if norm(x) > max_2norm ## 0 otherwise ## can be used to implement maxnorm regularization: ## constraining the maxnorm of XY to be <= mu is achieved ## by setting glrm.rx = QuadConstraint(sqrt(mu)) ## and the same for every element of glrm.ry mutable struct QuadConstraint<:Regularizer max_2norm::Float64 end QuadConstraint() = QuadConstraint(1) prox(r::QuadConstraint,u::AbstractArray,alpha::Number) = (r.max_2norm)/norm(u)*u prox!(r::QuadConstraint,u::Array{Float64},alpha::Number) = mul!(u, (r.max_2norm)/norm(u)) evaluate(r::QuadConstraint,u::AbstractArray) = norm(u) > r.max_2norm + TOL ? Inf : 0 scale(r::QuadConstraint) = 1 mul!(r::QuadConstraint, newscale::Number) = 1 ## one norm regularization mutable struct OneReg<:Regularizer scale::Float64 end OneReg() = OneReg(1) function softthreshold(x::Number; alpha=1) return max(x-alpha,0) + min(x+alpha,0) end prox(r::OneReg,u::AbstractArray,alpha::Number) = (st(x) = softthreshold(x; alpha=r.scale*alpha); st.(u)) prox!(r::OneReg,u::AbstractArray,alpha::Number) = (st(x) = softthreshold(x; alpha=r.scale*alpha); map!(st, u, u)) evaluate(r::OneReg,a::AbstractArray) = r.scale*sum(abs,a) ## no regularization mutable struct ZeroReg<:Regularizer end prox(r::ZeroReg,u::AbstractArray,alpha::Number) = u prox!(r::ZeroReg,u::Array{Float64},alpha::Number) = u evaluate(r::ZeroReg,a::AbstractArray) = 0 scale(r::ZeroReg) = 0 mul!(r::ZeroReg, newscale::Number) = 0 ## indicator of the nonnegative orthant ## (enforces nonnegativity, eg for nonnegative matrix factorization) mutable struct NonNegConstraint<:Regularizer end prox(r::NonNegConstraint,u::AbstractArray,alpha::Number=1) = broadcast(max,u,0) prox!(r::NonNegConstraint,u::Array{Float64},alpha::Number=1) = (@simd for i=1:length(u) @inbounds u[i] = max(u[i], 0) end; u) function evaluate(r::NonNegConstraint,a::AbstractArray) for ai in a if ai<0 return Inf end end return 0 end scale(r::NonNegConstraint) = 1 mul!(r::NonNegConstraint, newscale::Number) = 1 ## one norm regularization restricted to nonnegative orthant ## (enforces nonnegativity, in addition to one norm regularization) mutable struct NonNegOneReg<:Regularizer scale::Float64 end NonNegOneReg() = NonNegOneReg(1) prox(r::NonNegOneReg,u::AbstractArray,alpha::Number) = max.(u-alpha,0) prox!(r::NonNegOneReg,u::AbstractArray,alpha::Number) = begin nonnegsoftthreshold = (x::Number -> max.(x-alpha,0)) map!(nonnegsoftthreshold, u) end function evaluate(r::NonNegOneReg,a::AbstractArray) for ai in a if ai<0 return Inf end end return r.scale*sum(a) end scale(r::NonNegOneReg) = 1 mul!(r::NonNegOneReg, newscale::Number) = 1 ## Quadratic regularization restricted to nonnegative domain ## (Enforces nonnegativity alongside quadratic regularization) mutable struct NonNegQuadReg scale::Float64 end NonNegQuadReg() = NonNegQuadReg(1) prox(r::NonNegQuadReg,u::AbstractArray,alpha::Number) = max.(1/(1+2*alpha*r.scale)*u, 0) prox!(r::NonNegQuadReg,u::AbstractArray,alpha::Number) = begin mul!(u, 1/(1+2*alpha*r.scale)) maxval = maximum(u) clamp!(u, 0, maxval) end function evaluate(r::NonNegQuadReg,a::AbstractArray) for ai in a if ai<0 return Inf end end return r.scale*sumabs2(a) end ## indicator of the last entry being equal to 1 ## (allows an unpenalized offset term into the glrm when used in conjunction with lastentry_unpenalized) mutable struct lastentry1<:Regularizer r::Regularizer end lastentry1() = lastentry1(ZeroReg()) prox(r::lastentry1,u::AbstractArray{Float64,1},alpha::Number=1) = [prox(r.r,view(u,1:length(u)-1),alpha); 1] prox!(r::lastentry1,u::AbstractArray{Float64,1},alpha::Number=1) = (prox!(r.r,view(u,1:length(u)-1),alpha); u[end]=1; u) prox(r::lastentry1,u::AbstractArray{Float64,2},alpha::Number=1) = [prox(r.r,view(u,1:size(u,1)-1,:),alpha); ones(1, size(u,2))] prox!(r::lastentry1,u::AbstractArray{Float64,2},alpha::Number=1) = (prox!(r.r,view(u,1:size(u,1)-1,:),alpha); u[end,:]=1; u) evaluate(r::lastentry1,a::AbstractArray{Float64,1}) = (a[end]==1 ? evaluate(r.r,a[1:end-1]) : Inf) evaluate(r::lastentry1,a::AbstractArray{Float64,2}) = (all(a[end,:].==1) ? evaluate(r.r,a[1:end-1,:]) : Inf) scale(r::lastentry1) = scale(r.r) mul!(r::lastentry1, newscale::Number) = mul!(r.r, newscale) ## makes the last entry unpenalized ## (allows an unpenalized offset term into the glrm when used in conjunction with lastentry1) mutable struct lastentry_unpenalized<:Regularizer r::Regularizer end lastentry_unpenalized() = lastentry_unpenalized(ZeroReg()) prox(r::lastentry_unpenalized,u::AbstractArray{Float64,1},alpha::Number=1) = [prox(r.r,u[1:end-1],alpha); u[end]] prox!(r::lastentry_unpenalized,u::AbstractArray{Float64,1},alpha::Number=1) = (prox!(r.r,view(u,1:size(u,1)-1),alpha); u) evaluate(r::lastentry_unpenalized,a::AbstractArray{Float64,1}) = evaluate(r.r,a[1:end-1]) prox(r::lastentry_unpenalized,u::AbstractArray{Float64,2},alpha::Number=1) = [prox(r.r,u[1:end-1,:],alpha); u[end,:]] prox!(r::lastentry_unpenalized,u::AbstractArray{Float64,2},alpha::Number=1) = (prox!(r.r,view(u,1:size(u,1)-1,:),alpha); u) evaluate(r::lastentry_unpenalized,a::AbstractArray{Float64,2}) = evaluate(r.r,a[1:end-1,:]) scale(r::lastentry_unpenalized) = scale(r.r) mul!(r::lastentry_unpenalized, newscale::Number) = mul!(r.r, newscale) ## fixes the values of the first n elements of the column to be y ## optionally regularizes the last k-n elements with regularizer r mutable struct fixed_latent_features<:Regularizer r::Regularizer y::Array{Float64,1} # the values of the fixed latent features n::Int # length of y end fixed_latent_features(r::Regularizer, y::Array{Float64,1}) = fixed_latent_features(r,y,length(y)) # standalone use without another regularizer FixedLatentFeaturesConstraint(y::Array{Float64, 1}) = fixed_latent_features(ZeroReg(),y,length(y)) prox(r::fixed_latent_features,u::AbstractArray,alpha::Number) = [r.y; prox(r.r,u[(r.n+1):end],alpha)] function prox!(r::fixed_latent_features,u::Array{Float64},alpha::Number) prox!(r.r,u[(r.n+1):end],alpha) u[1:r.n]=y u end evaluate(r::fixed_latent_features, a::AbstractArray) = a[1:r.n]==r.y ? evaluate(r.r, a[(r.n+1):end]) : Inf scale(r::fixed_latent_features) = scale(r.r) mul!(r::fixed_latent_features, newscale::Number) = mul!(r.r, newscale) ## fixes the values of the last n elements of the column to be y ## optionally regularizes the first k-n elements with regularizer r mutable struct fixed_last_latent_features<:Regularizer r::Regularizer y::Array{Float64,1} # the values of the fixed latent features n::Int # length of y end fixed_last_latent_features(r::Regularizer, y::Array{Float64,1}) = fixed_last_latent_features(r,y,length(y)) # standalone use without another regularizer FixedLastLatentFeaturesConstraint(y::Array{Float64, 1}) = fixed_last_latent_features(ZeroReg(),y,length(y)) prox(r::fixed_last_latent_features,u::AbstractArray,alpha::Number) = [prox(r.r,u[(r.n+1):end],alpha); r.y] function prox!(r::fixed_last_latent_features,u::Array{Float64},alpha::Number) u[length(u)-r.n+1:end]=y prox!(r.r,u[1:length(a)-r.n],alpha) u end evaluate(r::fixed_last_latent_features, a::AbstractArray) = a[length(a)-r.n+1:end]==r.y ? evaluate(r.r, a[1:length(a)-r.n]) : Inf scale(r::fixed_last_latent_features) = scale(r.r) mul!(r::fixed_last_latent_features, newscale::Number) = mul!(r.r, newscale) ## indicator of 1-sparse vectors ## (enforces that exact 1 entry is nonzero, eg for orthogonal NNMF) mutable struct OneSparseConstraint<:Regularizer end prox(r::OneSparseConstraint, u::AbstractArray, alpha::Number=0) = (idx = argmax(u); v=zeros(size(u)); v[idx]=u[idx]; v) prox!(r::OneSparseConstraint, u::Array, alpha::Number=0) = (idx = argmax(u); ui = u[idx]; mul!(u,0); u[idx]=ui; u) function evaluate(r::OneSparseConstraint, a::AbstractArray) oneflag = false for ai in a if oneflag if ai!=0 return Inf end else if ai!=0 oneflag=true end end end return 0 end scale(r::OneSparseConstraint) = 1 mul!(r::OneSparseConstraint, newscale::Number) = 1 ## Indicator of k-sparse vectors mutable struct KSparseConstraint<:Regularizer k::Int end function evaluate(r::KSparseConstraint, a::AbstractArray) k = r.k nonzcount = 0 for ai in a if nonzcount == k if ai != 0 return Inf end else if ai != 0 nonzcount += 1 end end end return 0 end function prox(r::KSparseConstraint, u::AbstractArray, alpha::Number) k = r.k ids = partialsortperm(u, 1:k, by=abs, rev=true) uk = zero(u) uk[ids] = u[ids] uk end function prox!(r::KSparseConstraint, u::Array, alpha::Number) k = r.k ids = partialsortperm(u, 1:k, by=abs, rev=true) vals = u[ids] mul!(u,0) u[ids] = vals u end ## indicator of 1-sparse unit vectors ## (enforces that exact 1 entry is 1 and all others are zero, eg for kmeans) mutable struct UnitOneSparseConstraint<:Regularizer end prox(r::UnitOneSparseConstraint, u::AbstractArray, alpha::Number=0) = (idx = argmax(u); v=zeros(size(u)); v[idx]=1; v) prox!(r::UnitOneSparseConstraint, u::Array, alpha::Number=0) = (idx = argmax(u); mul!(u,0); u[idx]=1; u) function evaluate(r::UnitOneSparseConstraint, a::AbstractArray) oneflag = false for ai in a if ai==0 continue elseif ai==1 if oneflag return Inf else oneflag=true end else return Inf end end return 0 end scale(r::UnitOneSparseConstraint) = 1 mul!(r::UnitOneSparseConstraint, newscale::Number) = 1 ## indicator of vectors in the simplex: nonnegative vectors with unit l1 norm ## (eg for QuadLoss mixtures, ie soft kmeans) ## prox for the simplex is derived by Chen and Ye in [this paper](http://arxiv.org/pdf/1101.6081v2.pdf) mutable struct SimplexConstraint<:Regularizer end function prox(r::SimplexConstraint, u::AbstractArray, alpha::Number=0) n = length(u) y = sort(u, rev=true) ysum = cumsum(y) t = (ysum[end]-1)/n for i=1:(n-1) if (ysum[i]-1)/i >= y[i+1] t = (ysum[i]-1)/i break end end max.(u .- t, 0) end function evaluate(r::SimplexConstraint,a::AbstractArray) # check it's a unit vector abs(sum(a)-1)>TOL && return Inf # check every entry is nonnegative for i=1:length(a) a[i] < 0 && return Inf end return 0 end scale(r::SimplexConstraint) = 1 mul!(r::SimplexConstraint, newscale::Number) = 1 ## ordinal regularizer ## a block regularizer which # 1) forces the first k-1 entries of each column to be the same # 2) forces the last entry of each column to be increasing # 3) applies an internal regularizer to the first k-1 entries of each column ## should always be used in conjunction with lastentry1 regularization on x mutable struct OrdinalReg<:Regularizer r::Regularizer end OrdinalReg() = OrdinalReg(ZeroReg()) prox(r::OrdinalReg,u::AbstractArray,alpha::Number) = (uc = copy(u); prox!(r,uc,alpha)) function prox!(r::OrdinalReg,u::AbstractArray,alpha::Number) um = mean(u[1:end-1, :], dims=2) prox!(r.r,um,alpha) for i=1:size(u,1)-1 for j=1:size(u,2) u[i,j] = um[i] end end # this enforces rule 2) (increasing last row of u), but isn't exactly the prox function # for j=2:size(u,2) # if u[end,j-1] > u[end,j] # m = (u[end,j-1] + u[end,j])/2 # u[end,j-1:j] = m # end # end u end evaluate(r::OrdinalReg,a::AbstractArray) = evaluate(r.r,a[1:end-1,1]) scale(r::OrdinalReg) = scale(r.r) mul!(r::OrdinalReg, newscale::Number) = mul!(r.r, newscale) # make sure we don't add two offsets cuz that's weird lastentry_unpenalized(r::OrdinalReg) = r mutable struct MNLOrdinalReg<:Regularizer r::Regularizer end MNLOrdinalReg() = MNLOrdinalReg(ZeroReg()) prox(r::MNLOrdinalReg,u::AbstractArray,alpha::Number) = (uc = copy(u); prox!(r,uc,alpha)) function prox!(r::MNLOrdinalReg,u::AbstractArray,alpha::Number; TOL=1e-3) um = mean(u[1:end-1, :], dims=2) prox!(r.r,um,alpha) for i=1:size(u,1)-1 for j=1:size(u,2) u[i,j] = um[i] end end # this enforces rule 2) (decreasing last row of u, all less than 0), but isn't exactly the prox function u[end,1] = min(-TOL, u[end,1]) for j=2:size(u,2) u[end,j] = min(u[end,j], u[end,j-1]-TOL) end u end evaluate(r::MNLOrdinalReg,a::AbstractArray) = evaluate(r.r,a[1:end-1,1]) scale(r::MNLOrdinalReg) = scale(r.r) mul!(r::MNLOrdinalReg, newscale::Number) = mul!(r.r, newscale) # make sure we don't add two offsets cuz that's weird lastentry_unpenalized(r::MNLOrdinalReg) = r ## Quadratic regularization with non-zero mean mutable struct RemQuadReg<:Regularizer scale::Float64 m::Array{Float64, 1} end RemQuadReg(m::Array{Float64, 1}) = RemQuadReg(1, m) prox(r::RemQuadReg, u::AbstractArray, alpha::Number) = (u + 2 * alpha * r.scale * r.m) / (1 + 2 * alpha * r.scale) prox!(r::RemQuadReg, u::Array{Float64}, alpha::Number) = begin broadcast!(.+, u, u, 2 * alpha * r.scale * r.m) mul!(u, 1 / (1 + 2 * alpha * r.scale)) end evaluate(r::RemQuadReg, a::AbstractArray) = r.scale * sum(abs2, a - r.m) ## simpler method for numbers, not arrays evaluate(r::Regularizer, u::Number) = evaluate(r, [u]) prox(r::Regularizer, u::Number, alpha::Number) = prox(r, [u], alpha)[1] # if step size not specified, step size = 1 prox(r::Regularizer, u) = prox(r, u, 1)
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
1752
#### randomized SVD (from Jiahao Chen, based on http://arxiv.org/pdf/0909.4061.pdf) import LinearAlgebra: SVD #The simplest possible randomized svd #Inputs # A: input matrix # n: Number of singular value/vector pairs to find # p: Number of extra vectors to include in computation function rsvd(A, n, p=0) Q = rrange(A, n, p=p) rsvd_direct(A, Q) end #Algorithm 4.4: randomized subspace iteration #A must support size(A), multiply and transpose multiply #p is the oversampling parameter #q controls the accuracy of the subspace found; it is the "number of power iterations" #A good heuristic is that when the original scheme produces a basis whose #approximation error is within a factor C of the optimum, the power scheme produces #an approximation error within C^(1/(2q+1)) of the optimum. function rrange(A, l::Integer; p::Integer=5, q::Integer=3) p≥0 || error() m, n = size(A) l <= m || error("Cannot find $l linearly independent vectors of $m x $n matrix") Ω = randn(n, l+p) Q = q_from_qr(A*Ω) for t=1:q Q = q_from_qr(A'*Q) Q = q_from_qr(A*Q) end Q = p==0 ? Q : Q[:,1:l] end function q_from_qr(Y, l::Integer=-1) Q = full(qrfact!(Y)[:Q]) Q = l<0 ? Q : Q[:,1:l] end #Algorithm 5.1: direct SVD #More accurate function rsvd_direct(A, Q) B=Q'A S=svdfact!(B) SVD(Q*S[:U], S[:S], S[:Vt]) end function onepass_svd(A::AbstractArray, r::Int) m, n = size(A) k = 2r + 1 l = 4r + 3 Omega = randn(n,k) Psi = randn(m,l) Y = A*Omega W = A'*Psi Q,_ = qr(view(Y,:,1:k)) B = view(W,:,1:l) / (Q'*view(Psi,:,1:l)) # Q's.Psi is k x l, its pinv is l x k, so B is n x k mysvd,_ = svds(B, nsv=r) # U is n x r return SVD(Q*mysvd.Vt, mysvd.S, mysvd.U) end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
6950
# Supported domains: Real, Boolean, Ordinal, Periodic, Count # The purpose of domains is to be able to sample over different possible values of `a` regardless of # the loss that was used in the GLRM. The reason for doing this is to evaluate the performance of GLRMS. # For instance, let's say we use PCA (QuadLoss losses) to model a binary data frame (not the best idea). # In order to override the standard imputation with `sample(QuadLoss(), u)`, which assumes imputation over the reals, # we can use `sample(BoolDomain(), QuadLoss(), u)` and see which of {-1,1} is best. The reason we want to be able to # do this is to compare a baseline model (e.g. PCA) with a more logical model using heterogenous losses, # yet still give each model the same amount of information regarding how imputation should be done. # The domains themselves are defined in domains.jl # In order to accomplish this we define a series of domains that describe how imputation should be performed over # them. Each combination of domain and loss must have the following: # Methods: # `sample(D::my_Domain, l::my_loss_type, u::Float64) ::Float64` # Samples aᵤ from among the range of possible values of a. The range of # possible values of a should be implicitly or explicitly provided by `D`. # There should be an sample method for every combination of datatype and loss. # DataTypes are assigned to each column of the data and are not part of the low-rank model itself, they just serve # as a way to evaluate the performance of the low-rank model. import StatsBase: sample, Weights export sample, sample_missing ########################################## REALS ########################################## # Real data can take values from ℜ # l.scale should be 1/var sample(D::RealDomain, l::QuadLoss, u::Float64; noisevar=l.scale) = u + randn()/sqrt(noisevar) ########################################## BOOLS ########################################## # Boolean data should take values from {true, false} function sample(D::BoolDomain, l::LogisticLoss, u::Float64) rand()<=(1/(1+exp(-u))) ? true : false end # generic method # Evaluate w/ a=-1 and a=1 and see which is better according to that loss. # This is fast and works for any loss. function sample(D::BoolDomain, l::Loss, u::AbstractArray) prob = exp.(-[evaluate(l, u, i) for i in (true, false)]) return sample(Weights(prob)) end ########################################## ORDINALS ########################################## # Ordinal data should take integer values ranging from `min` to `max` # a DiffLoss is one in which l(u,a) = f(u-a) AND argmin f(x) = 0 # for example, QuadLoss(u,a)=(u-a)² and we can write f(x)=x² and x=u-a function sample(D::OrdinalDomain, l::DiffLoss, u::Float64) uint = round(Int, u) uclip = max(D.min, min(D.max, uint)) return uclip end # generic method function sample(D::OrdinalDomain, l::Loss, u::AbstractArray) prob = exp.(-[evaluate(l, u, i) for i in D.min:D.max]) return sample(Weights(prob)) end ########################################## CATEGORICALS ########################################## # Categorical data should take integer values ranging from 1 to `max` function sample(D::CategoricalDomain, l::MultinomialLoss, u::Array{Float64}) return sample(Weights(exp.(u))) end # sample(D::CategoricalDomain, l::OvALoss, u::Array{Float64}) = ?? # generic method function sample(D::CategoricalDomain, l::Loss, u::AbstractArray) prob = exp.(-[evaluate(l, u, i) for i in D.min:D.max]) return sample(Weights(prob)) end ########################################## PERIODIC ########################################## # Periodic data can take values from ℜ, but given a period T, we should have error_metric(a,a+T) = 0 # Since periodic data can take any real value, we can use the real-valued imputation methods # sample(D::PeriodicDomain, l::Loss, u::Float64) = ?? ########################################## COUNTS ########################################## # Count data can take values over ℕ, which we approximate as {0, 1, 2 ... `max_count`} # Our approximation of ℕ is really an ordinal sample(D::CountDomain, l::Loss, u::Float64) = sample(OrdinalDomain(0,D.max_count), l, u) #################################################################################### # Use impute and error_metric over arrays function sample( domains::Array{DomainSubtype,1}, losses::Array{LossSubtype,1}, U::Array{Float64,2}) where {DomainSubtype<:Domain,LossSubtype<:Loss} m, d = size(U) n = length(losses) yidxs = get_yidxs(losses) A_sampled = Array(Number, (m, n)); for f in 1:n for i in 1:m if length(yidxs[f]) > 1 A_sampled[i,f] = sample(domains[f], losses[f], vec(U[i,yidxs[f]])) else A_sampled[i,f] = sample(domains[f], losses[f], U[i,yidxs[f]]) end end end return A_sampled end # sample missing entries in A according to the fit model (X,Y) function sample_missing(glrm::GLRM) do_sample(e::Int, f::Int) = !(e in glrm.observed_examples[f]) return sample(glrm, do_sample) end all_entries(e::Int,f::Int) = true # sample all entries in A according to the fit model (X,Y) # do_sample is a function that takes an example-feature pair (e,f) # and returns true if that entry should be replaced by a sample from the model # is_dense controls whether the output should be a dense matrix # it's true by default because we sample all entries by default function sample(glrm::GLRM, do_sample::Function=all_entries, is_dense::Bool=true) U = glrm.X'*glrm.Y m, d = size(U) n = length(glrm.losses) yidxs = get_yidxs(glrm.losses) domains = Domain[domain(l) for l in glrm.losses] # make sure we don't mutate the type of the array A # even if all data for some real loss take integer values for j=1:n if isa(domains[j], RealDomain) && isa(glrm.A[:,j], Array{Union{Missing, Int},1}) domains[j] = OrdinalDomain(minimum(dropmissing(glrm.A[j])), maximum(dropmissing(glrm.A[j]))) end end # compute the correct variance for real valued losses original_scales = [l.scale for l in glrm.losses] for j=1:n if isa(domains[j], RealDomain) println("old scale:", glrm.losses[j].scale) glrm.losses[j].scale = mean((U[glrm.observed_examples[j],j] - glrm.A[glrm.observed_examples[j],j]).^2) println("new scale:", glrm.losses[j].scale) end end A_sampled = copy(glrm.A); if is_dense && isa(A_sampled, SparseMatrixCSC) A_sampled = Matrix(A_sampled) end for f in 1:n for e in 1:m if do_sample(e,f) A_sampled[e,f] = sample(domains[f], glrm.losses[f], U[e,yidxs[f]]) end end end # revert scales to previously defined values for j=1:n glrm.losses[j].scale = original_scales[j] end return A_sampled end function sample(losses::Array{LossSubtype,1}, U::Array{Float64,2}) where LossSubtype<:Loss domains = Domain[domain(l) for l in losses] sample(domains, losses, U) end ### Hack to sample from non-probabilistic losses sample(D::Domain, l::Loss, u) = impute(D, l, u)
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
9359
import ScikitLearnBase using ScikitLearnBase: @declare_hyperparameters export SkGLRM, PCA, QPCA, NNMF, KMeans, RPCA ################################################################################ # Shared definitions # Note: there is redundancy in the hyperparameters. This is # necessary if we want to offer a simple interface in PCA(), and a full # interface in SkGLRM(). PCA(abs_tol=0.1, max_iter=200) cannot create # `ProxGradParams(abs_tol, max_iter)` right away, because abs_tol and # max_iter are hyperparameters and need to be visible/changeable by # set_params for grid-search. # There are other ways of setting it up, but this seems like the simplest. mutable struct SkGLRM <: ScikitLearnBase.BaseEstimator # Hyperparameters: those will be passed to GLRM, so it doesn't matter if # they're not typed. fit_params # if fit_params != nothing, it has priority over abs_tol, etc. loss rx ry # rx/ry_scale can be nothing, in which case they're ignored. This allows # ry to be a vector rx_scale ry_scale abs_tol::Float64 rel_tol::Float64 max_iter::Int inner_iter::Int k::Int init::Function # initialization function verbose::Bool glrm::GLRM # left undefined by the constructor end # This defines `clone`, `get_params` and `set_params!` @declare_hyperparameters(SkGLRM, [:fit_params, :init, :rx, :ry, :rx_scale, :ry_scale, :loss, :abs_tol, :rel_tol, :max_iter, :inner_iter, :k, :verbose]) function do_fit!(skglrm::SkGLRM, glrm::GLRM) fit_params = (skglrm.fit_params === nothing ? ProxGradParams(abs_tol=skglrm.abs_tol, rel_tol=skglrm.rel_tol, max_iter=skglrm.max_iter) : skglrm.fit_params) fit!(glrm, fit_params; verbose=skglrm.verbose) end function ind2sub(a, i) i2s[i] end function build_glrm(skglrm::SkGLRM, X, missing_values) k = skglrm.k == -1 ? size(X, 2) : skglrm.k i2s = CartesianIndices(missing_values) obs = [i2s[x] for x in (LinearIndices(.!missing_values))[findall(.!missing_values)] ] rx, ry = skglrm.rx, skglrm.ry if skglrm.rx_scale !== nothing rx = copy(rx) mul!(rx, skglrm.rx_scale) end if skglrm.ry_scale !== nothing ry = copy(ry) mul!(ry, skglrm.ry_scale) end GLRM(X, skglrm.loss, rx, ry, k; obs=obs) end # The input matrix is called X (instead of A) following ScikitLearn's convention function ScikitLearnBase.fit_transform!(skglrm::SkGLRM, X, y=nothing; missing_values=isnan.(X)) @assert size(X)==size(missing_values) # Reuse the standard GLRM constructor and fitting machinery skglrm.glrm = build_glrm(skglrm, X, missing_values) skglrm.init(skglrm.glrm) X, _, _ = do_fit!(skglrm, skglrm.glrm) return X' end function ScikitLearnBase.fit!(skglrm::SkGLRM, X, y=nothing; kwargs...) ScikitLearnBase.fit_transform!(skglrm, X; kwargs...) skglrm end """ `transform(skglrm::SkGLRM, X)` brings X to low-rank-space """ function ScikitLearnBase.transform(skglrm::SkGLRM, X; missing_values=isnan.(X)) glrm = skglrm.glrm ry_fixed = [FixedLatentFeaturesConstraint(glrm.Y[:, i]) for i=1:size(glrm.Y, 2)] glrm_fixed = build_glrm(skglrm, X, missing_values) X2, _, ch = do_fit!(skglrm, glrm_fixed) return X2' end """ `transform(skglrm::SkGLRM, X)` brings X from low-rank-space back to the original input-space """ ScikitLearnBase.inverse_transform(skglrm::SkGLRM, X) = X * skglrm.glrm.Y # Only makes sense for KMeans function ScikitLearnBase.predict(km::SkGLRM, X) X2 = ScikitLearnBase.transform(km, X) # This performs the "argmax" over the columns to get the cluster # return mapslices(argmax, X2, 2)[:] end ################################################################################ # Public constructors """ SkGLRM(; fit_params=nothing, init=glrm->nothing, k::Int=-1, loss=QuadLoss(), rx::Regularizer=ZeroReg(), ry=ZeroReg(), rx_scale=nothing, ry_scale=nothing, # defaults taken from proxgrad.jl abs_tol=0.00001, rel_tol=0.0001, max_iter=100, inner_iter=1, verbose=false) Generalized low rank model (GLRM). GLRMs model a data array by a low rank matrix. GLRM makes it easy to mix and match loss functions and regularizers to construct a model suitable for a particular data set. Hyperparameters: - `fit_params`: algorithm to use in fitting the GLRM. Defaults to `ProxGradParams(abs_tol, rel_tol, skglrm.max_iter)` - `init`: function to initialize the low-rank matrices, before the main gradient descent loop. - `k`: number of components (rank of the latent representation). By default, use k=nfeatures (full rank) - `loss`: loss function. Can be either a single `::Loss` object, or a vector of `nfeature` loss objects, allowing for mixed inputs (eg. binary and continuous data) - `rx`: regularization over the hidden coefficient matrix - `ry`: regularization over the latent features matrix. Can be either a single regularizer, or a vector of regularizers of length nfeatures, allowing for mixed inputs - `rx_scale`, `ry_scale`: strength of the regularization (higher is stronger). By default, `scale=1`. Cannot be used if `rx/ry` are vectors. - `abs_tol, rel_tol`: tolerance criteria to stop the gradient descent iteration - `max_iter, inner_iter`: number of iterations in the gradient descent loops - `verbose`: print convergence information All parameters (in particular, `rx/ry_scale`) can be tuned with `ScikitLearn.GridSearch.GridSearchCV` For more information on the parameters see [LowRankModels](https://github.com/madeleineudell/LowRankModels.jl) """ function SkGLRM(; fit_params=nothing, init=glrm->nothing, k=-1, loss=QuadLoss(), rx=ZeroReg(), ry=ZeroReg(), rx_scale=nothing, ry_scale=nothing, # defaults taken from proxgrad.jl abs_tol=0.00001, rel_tol=0.0001, max_iter=100, inner_iter=1, verbose=false) dummy = pca(zeros(1,1), 1) # it needs an initial value - will be overwritten return SkGLRM(fit_params, loss, rx, ry, rx_scale, ry_scale, abs_tol, rel_tol, max_iter, inner_iter, k, init, verbose, dummy) end """ PCA(; k=-1, ...) Principal Component Analysis with `k` components (defaults to using `nfeatures`). Equivalent to SkGLRM(loss=QuadLoss(), rx=ZeroReg(), ry=ZeroReg(), init=init_svd!) See ?SkGLRM for more hyperparameters. In particular, increasing `max_iter` (default 100) may improve convergence. """ function PCA(; kwargs...) # principal components analysis # minimize ||A - XY||^2 loss = QuadLoss() r = ZeroReg() return SkGLRM(; loss=loss, rx=r, ry=r, init=init_svd!, kwargs...) end """ QPCA(k=-1, rx_scale=1, ry_scale=1; ...) Quadratically Regularized PCA with `k` components (default: `k = nfeatures`). Equivalent to SkGLRM(loss=QuadLoss(), rx=QuadReg(1.0), ry=QuadReg(1.0), init=init_svd!) Regularization strength is set by `rx_scale` and `ry_scale`. See ?SkGLRM for more hyperparameters. """ function QPCA(; kwargs...) # quadratically regularized principal components analysis # minimize ||A - XY||^2 + rx_scale*||X||^2 + ry_scale*||Y||^2 loss = QuadLoss() r = QuadReg(1.0) # scale is set in build_glrm return SkGLRM(; loss=loss, rx=r, ry=r, init=init_svd!, kwargs...) end """ NNMF(; k=-1, ...) Non-negative matrix factorization with `k` components (default: `k=nfeatures`). Equivalent to SkGLRM(loss=QuadLoss(), rx=NonNegConstraint(), ry=NonNegConstraint(), init=init_svd!) See ?SkGLRM for more hyperparameters """ function NNMF(; kwargs...) # nonnegative matrix factorization # minimize_{X>=0, Y>=0} ||A - XY||^2 loss = QuadLoss() r = NonNegConstraint() return SkGLRM(; loss=loss,rx=r,ry=r, init=init_svd!, kwargs...) end """ KMeans(; k=2, inner_iter=10, max_iter=100, ...) K-Means algorithm. Separates the data into `k` clusters. See ?SkGLRM for more hyperparameters. In particular, increasing `inner_iter` and `max_iter` may improve convergence. **IMPORTANT**: This is not the most efficient way of performing K-Means, and the iteration may not reach convergence. """ function KMeans(; k=2, inner_iter=10, kwargs...) # minimize_{columns of X are unit vectors} ||A - XY||^2 loss = QuadLoss() rx = UnitOneSparseConstraint() ry = ZeroReg() return SkGLRM(k=k, loss=loss,rx=rx,ry=ry, inner_iter=inner_iter, init=init_kmeanspp!; kwargs...) end """ RPCA(; k=-1, ...) Robust PCA with `k` components (default: `k = nfeatures`). Equivalent to SkGLRM(loss=HuberLoss(), rx=QuadReg(1.0), ry=QuadReg(1.0), init=init_svd!) Regularization strength is set by `rx_scale` and `ry_scale`. See ?SkGLRM for more hyperparameters. In particular, increasing `max_iter` (default 100) may improve convergence. """ function RPCA(; kwargs...) # robust PCA # minimize HuberLoss(A - XY) + scale*||X||^2 + scale*||Y||^2 loss = HuberLoss() r = QuadReg(1.0) return SkGLRM(; loss=loss,rx=r,ry=r, init=init_svd!, kwargs...) end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
1485
import LinearAlgebra: size, axpy! import LinearAlgebra.BLAS: gemm! #import Base: shmem_rand, shmem_randn export ShareGLRM, share ### GLRM TYPE mutable struct ShareGLRM{L<:Loss, R<:Regularizer}<:AbstractGLRM A::SharedArray # The data table transformed into a coded array losses::Array{L,1} # array of loss functions rx::Regularizer # The regularization to be applied to each row of Xᵀ (column of X) ry::Array{R,1} # Array of regularizers to be applied to each column of Y k::Int # Desired rank observed_features::ObsArray # for each example, an array telling which features were observed observed_examples::ObsArray # for each feature, an array telling in which examples the feature was observed X::SharedArray{Float64,2} # Representation of data in low-rank space. A ≈ X'Y Y::SharedArray{Float64,2} # Representation of features in low-rank space. A ≈ X'Y end function share(glrm::GLRM) isa(glrm.A, SharedArray) ? A = glrm.A : A = convert(SharedArray,glrm.A) isa(glrm.X, SharedArray) ? X = glrm.X : X = convert(SharedArray, glrm.X) isa(glrm.Y, SharedArray) ? Y = glrm.Y : Y = convert(SharedArray, glrm.Y) return ShareGLRM(A, glrm.losses, glrm.rx, glrm.ry, glrm.k, glrm.observed_features, glrm.observed_examples, X, Y) end ### todo: define objective for shared arrays so it's evaluated (safely) in parallel
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
1148
export pca, qpca, nnmf, rpca, kmeans # principal components analysis # minimize ||A - XY||^2 function pca(A::AbstractArray, k::Int; kwargs...) loss = QuadLoss() r = ZeroReg() return GLRM(A,loss,r,r,k; kwargs...) end # quadratically regularized principal components analysis # minimize ||A - XY||^2 + scale*||X||^2 + scale*||Y||^2 function qpca(A::AbstractArray, k::Int; scale=1.0::Float64, kwargs...) loss = QuadLoss() r = QuadReg(scale) return GLRM(A,loss,r,r,k; kwargs...) end # nonnegative matrix factorization # minimize_{X>=0, Y>=0} ||A - XY||^2 function nnmf(A::AbstractArray, k::Int; kwargs...) loss = QuadLoss() r = NonNegConstraint() GLRM(A,loss,r,r,k; kwargs...) end # k-means # minimize_{columns of X are unit vectors} ||A - XY||^2 function kmeans(A::AbstractArray, k::Int; kwargs...) loss = QuadLoss() ry = ZeroReg() rx = UnitOneSparseConstraint() return GLRM(A,loss,rx,ry,k; kwargs...) end # robust PCA # minimize HuberLoss(A - XY) + scale*||X||^2 + scale*||Y||^2 function rpca(A::AbstractArray, k::Int; scale=1.0::Float64, kwargs...) loss = HuberLoss() r = QuadReg(scale) return GLRM(A,loss,r,r,k; kwargs...) end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
9842
### Proximal gradient method export ProxGradParams, fit! mutable struct ProxGradParams<:AbstractParams stepsize::Float64 # initial stepsize max_iter::Int # maximum number of outer iterations inner_iter_X::Int # how many prox grad steps to take on X before moving on to Y (and vice versa) inner_iter_Y::Int # how many prox grad steps to take on Y before moving on to X (and vice versa) abs_tol::Float64 # stop if objective decrease upon one outer iteration is less than this * number of observations rel_tol::Float64 # stop if objective decrease upon one outer iteration is less than this * objective value min_stepsize::Float64 # use a decreasing stepsize, stop when reaches min_stepsize end function ProxGradParams(stepsize::Number=1.0; # initial stepsize max_iter::Int=100, # maximum number of outer iterations inner_iter_X::Int=1, # how many prox grad steps to take on X before moving on to Y (and vice versa) inner_iter_Y::Int=1, # how many prox grad steps to take on Y before moving on to X (and vice versa) inner_iter::Int=1, abs_tol::Number=0.00001, # stop if objective decrease upon one outer iteration is less than this * number of observations rel_tol::Number=0.0001, # stop if objective decrease upon one outer iteration is less than this * objective value min_stepsize::Number=0.01*stepsize) # stop if stepsize gets this small stepsize = convert(Float64, stepsize) inner_iter_X = max(inner_iter_X, inner_iter) inner_iter_Y = max(inner_iter_Y, inner_iter) return ProxGradParams(convert(Float64, stepsize), max_iter, inner_iter_X, inner_iter_Y, convert(Float64, abs_tol), convert(Float64, rel_tol), convert(Float64, min_stepsize)) end ### FITTING function fit!(glrm::GLRM, params::ProxGradParams; ch::ConvergenceHistory=ConvergenceHistory("ProxGradGLRM"), verbose=true, kwargs...) ### initialization A = glrm.A # rename these for easier local access losses = glrm.losses rx = glrm.rx ry = glrm.ry X = glrm.X; Y = glrm.Y # check that we didn't initialize to zero (otherwise we will never move) if norm(Y) == 0 Y = .1*randn(k,d) end k = glrm.k m,n = size(A) # find spans of loss functions (for multidimensional losses) yidxs = get_yidxs(losses) d = maximum(yidxs[end]) # check Y is the right size if d != size(Y,2) @warn("The width of Y should match the embedding dimension of the losses. Instead, embedding_dim(glrm.losses) = $(embedding_dim(glrm.losses)) and size(glrm.Y, 2) = $(size(glrm.Y, 2)). Reinitializing Y as randn(glrm.k, embedding_dim(glrm.losses).") # Please modify Y or the embedding dimension of the losses to match, # eg, by setting `glrm.Y = randn(glrm.k, embedding_dim(glrm.losses))`") glrm.Y = randn(glrm.k, d) end XY = Array{Float64}(undef, (m, d)) gemm!('T','N',1.0,X,Y,0.0,XY) # XY = X' * Y initial calculation # step size (will be scaled below to ensure it never exceeds 1/\|g\|_2 or so for any subproblem) alpharow = params.stepsize*ones(m) alphacol = params.stepsize*ones(n) # stopping criterion: stop when decrease in objective < tol, scaled by the number of observations scaled_abs_tol = params.abs_tol * mapreduce(length,+,glrm.observed_features) # alternating updates of X and Y if verbose println("Fitting GLRM") end update_ch!(ch, 0, objective(glrm, X, Y, XY, yidxs=yidxs)) t = time() steps_in_a_row = 0 # gradient wrt columns of X g = zeros(k) # gradient wrt column-chunks of Y G = zeros(k, d) # rowwise objective value obj_by_row = zeros(m) # columnwise objective value obj_by_col = zeros(n) # cache views for better memory management # make sure we don't try to access memory not allocated to us @assert(size(Y) == (k,d)) @assert(size(X) == (k,m)) # views of the columns of X corresponding to each example ve = [view(X,:,e) for e=1:m] # views of the column-chunks of Y corresponding to each feature y_j # vf[f] == Y[:,f] vf = [view(Y,:,yidxs[f]) for f=1:n] # views of the column-chunks of G corresponding to the gradient wrt each feature y_j # these have the same shape as y_j gf = [view(G,:,yidxs[f]) for f=1:n] # working variables newX = copy(X) newY = copy(Y) newve = [view(newX,:,e) for e=1:m] newvf = [view(newY,:,yidxs[f]) for f=1:n] for i=1:params.max_iter # STEP 1: X update # XY = X' * Y was computed above # reset step size if we're doing something more like alternating minimization if params.inner_iter_X > 1 || params.inner_iter_Y > 1 for ii=1:m alpharow[ii] = params.stepsize end for jj=1:n alphacol[jj] = params.stepsize end end for inneri=1:params.inner_iter_X for e=1:m # for every example x_e == ve[e] fill!(g, 0.) # reset gradient to 0 # compute gradient of L with respect to Xᵢ as follows: # ∇{Xᵢ}L = Σⱼ dLⱼ(XᵢYⱼ)/dXᵢ for f in glrm.observed_features[e] # but we have no function dLⱼ/dXᵢ, only dLⱼ/d(XᵢYⱼ) aka dLⱼ/du # by chain rule, the result is: Σⱼ (dLⱼ(XᵢYⱼ)/du * Yⱼ), where dLⱼ/du is our grad() function curgrad = grad(losses[f],XY[e,yidxs[f]],A[e,f]) if isa(curgrad, Number) axpy!(curgrad, vf[f], g) else # on v0.4: gemm!('N', 'T', 1.0, vf[f], curgrad, 1.0, g) gemm!('N', 'N', 1.0, vf[f], curgrad, 1.0, g) end end # take a proximal gradient step to update ve[e] l = length(glrm.observed_features[e]) + 1 # if each loss function has lipshitz constant 1 this bounds the lipshitz constant of this example's objective obj_by_row[e] = row_objective(glrm, e, ve[e]) # previous row objective value while alpharow[e] > params.min_stepsize stepsize = alpharow[e]/l # newx = prox(rx[e], ve[e] - stepsize*g, stepsize) # this will use much more memory than the inplace version with linesearch below ## gradient step: Xᵢ += -(α/l) * ∇{Xᵢ}L axpy!(-stepsize,g,newve[e]) ## prox step: Xᵢ = prox_rx(Xᵢ, α/l) prox!(rx[e],newve[e],stepsize) if row_objective(glrm, e, newve[e]) < obj_by_row[e] copyto!(ve[e], newve[e]) alpharow[e] *= 1.05 break else # the stepsize was too big; undo and try again only smaller copyto!(newve[e], ve[e]) alpharow[e] *= .7 if alpharow[e] < params.min_stepsize alpharow[e] = params.min_stepsize * 1.1 break end end end end # for e=1:m gemm!('T','N',1.0,X,Y,0.0,XY) # Recalculate XY using the new X end # inner iteration # STEP 2: Y update for inneri=1:params.inner_iter_Y fill!(G, 0.) for f=1:n # compute gradient of L with respect to Yⱼ as follows: # ∇{Yⱼ}L = Σⱼ dLⱼ(XᵢYⱼ)/dYⱼ for e in glrm.observed_examples[f] # but we have no function dLⱼ/dYⱼ, only dLⱼ/d(XᵢYⱼ) aka dLⱼ/du # by chain rule, the result is: Σⱼ dLⱼ(XᵢYⱼ)/du * Xᵢ, where dLⱼ/du is our grad() function curgrad = grad(losses[f],XY[e,yidxs[f]],A[e,f]) if isa(curgrad, Number) axpy!(curgrad, ve[e], gf[f]) else # on v0.4: gemm!('N', 'T', 1.0, ve[e], curgrad, 1.0, gf[f]) gemm!('N', 'T', 1.0, ve[e], curgrad, 1.0, gf[f]) end end # take a proximal gradient step l = length(glrm.observed_examples[f]) + 1 obj_by_col[f] = col_objective(glrm, f, vf[f]) while alphacol[f] > params.min_stepsize stepsize = alphacol[f]/l # newy = prox(ry[f], vf[f] - stepsize*gf[f], stepsize) ## gradient step: Yⱼ += -(α/l) * ∇{Yⱼ}L axpy!(-stepsize,gf[f],newvf[f]) ## prox step: Yⱼ = prox_ryⱼ(Yⱼ, α/l) prox!(ry[f],newvf[f],stepsize) new_obj_by_col = col_objective(glrm, f, newvf[f]) if new_obj_by_col < obj_by_col[f] copyto!(vf[f], newvf[f]) alphacol[f] *= 1.05 obj_by_col[f] = new_obj_by_col break else copyto!(newvf[f], vf[f]) alphacol[f] *= .7 if alphacol[f] < params.min_stepsize alphacol[f] = params.min_stepsize * 1.1 break end end end end # for f=1:n gemm!('T','N',1.0,X,Y,0.0,XY) # Recalculate XY using the new Y end # inner iteration # STEP 3: Record objective obj = sum(obj_by_col) t = time() - t update_ch!(ch, t, obj) t = time() # STEP 4: Check stopping criterion obj_decrease = ch.objective[end-1] - obj if i>10 && (obj_decrease < scaled_abs_tol || obj_decrease/obj < params.rel_tol) break end if verbose && i%10==0 println("Iteration $i: objective value = $(ch.objective[end])") end end return glrm.X, glrm.Y, ch end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
10099
### Proximal gradient method export ProxGradParams, fit! mutable struct ProxGradParams<:AbstractParams stepsize::Float64 # initial stepsize max_iter::Int # maximum number of outer iterations inner_iter_X::Int # how many prox grad steps to take on X before moving on to Y (and vice versa) inner_iter_Y::Int # how many prox grad steps to take on Y before moving on to X (and vice versa) abs_tol::Float64 # stop if objective decrease upon one outer iteration is less than this * number of observations rel_tol::Float64 # stop if objective decrease upon one outer iteration is less than this * objective value min_stepsize::Float64 # use a decreasing stepsize, stop when reaches min_stepsize end function ProxGradParams(stepsize::Number=1.0; # initial stepsize max_iter::Int=100, # maximum number of outer iterations inner_iter_X::Int=1, # how many prox grad steps to take on X before moving on to Y (and vice versa) inner_iter_Y::Int=1, # how many prox grad steps to take on Y before moving on to X (and vice versa) inner_iter::Int=1, abs_tol::Number=0.00001, # stop if objective decrease upon one outer iteration is less than this * number of observations rel_tol::Number=0.0001, # stop if objective decrease upon one outer iteration is less than this * objective value min_stepsize::Number=0.01*stepsize) # stop if stepsize gets this small stepsize = convert(Float64, stepsize) inner_iter_X = max(inner_iter_X, inner_iter) inner_iter_Y = max(inner_iter_Y, inner_iter) return ProxGradParams(convert(Float64, stepsize), max_iter, inner_iter_X, inner_iter_Y, convert(Float64, abs_tol), convert(Float64, rel_tol), convert(Float64, min_stepsize)) end ### FITTING function fit!(glrm::GLRM, params::ProxGradParams; ch::ConvergenceHistory=ConvergenceHistory("ProxGradGLRM"), verbose=true, kwargs...) ### initialization A = glrm.A # rename these for easier local access losses = glrm.losses rx = glrm.rx ry = glrm.ry X = glrm.X; Y = glrm.Y # check that we didn't initialize to zero (otherwise we will never move) if norm(Y) == 0 Y = .1*randn(k,d) end k = glrm.k m,n = size(A) # find spans of loss functions (for multidimensional losses) yidxs = get_yidxs(losses) d = maximum(yidxs[end]) # check Y is the right size if d != size(Y,2) @warn("The width of Y should match the embedding dimension of the losses. Instead, embedding_dim(glrm.losses) = $(embedding_dim(glrm.losses)) and size(glrm.Y, 2) = $(size(glrm.Y, 2)). Reinitializing Y as randn(glrm.k, embedding_dim(glrm.losses).") # Please modify Y or the embedding dimension of the losses to match, # eg, by setting `glrm.Y = randn(glrm.k, embedding_dim(glrm.losses))`") glrm.Y = randn(glrm.k, d) end XY = Array{Float64}(undef, (m, d)) gemm!('T','N',1.0,X,Y,0.0,XY) # XY = X' * Y initial calculation # step size (will be scaled below to ensure it never exceeds 1/\|g\|_2 or so for any subproblem) alpharow = params.stepsize*ones(m) alphacol = params.stepsize*ones(n) # stopping criterion: stop when decrease in objective < tol, scaled by the number of observations scaled_abs_tol = params.abs_tol * mapreduce(length,+,glrm.observed_features) # alternating updates of X and Y if verbose println("Fitting GLRM") end update_ch!(ch, 0, objective(glrm, X, Y, XY, yidxs=yidxs)) t = time() steps_in_a_row = 0 # gradient wrt columns of X g = [zeros(k) for t in 1:Threads.nthreads()] # gradient wrt column-chunks of Y G = zeros(k, d) # rowwise objective value obj_by_row = zeros(m) # columnwise objective value obj_by_col = zeros(n) # cache views for better memory management # make sure we don't try to access memory not allocated to us @assert(size(Y) == (k,d)) @assert(size(X) == (k,m)) # views of the columns of X corresponding to each example ve = [view(X,:,e) for e=1:m] # views of the column-chunks of Y corresponding to each feature y_j # vf[f] == Y[:,f] vf = [view(Y,:,yidxs[f]) for f=1:n] # views of the column-chunks of G corresponding to the gradient wrt each feature y_j # these have the same shape as y_j gf = [view(G,:,yidxs[f]) for f=1:n] # working variables newX = copy(X) newY = copy(Y) newve = [view(newX,:,e) for e=1:m] newvf = [view(newY,:,yidxs[f]) for f=1:n] for i=1:params.max_iter # STEP 1: X update # XY = X' * Y was computed above # reset step size if we're doing something more like alternating minimization if params.inner_iter_X > 1 || params.inner_iter_Y > 1 for ii=1:m alpharow[ii] = params.stepsize end for jj=1:n alphacol[jj] = params.stepsize end end for inneri=1:params.inner_iter_X Threads.@threads for e=1:m # for every example x_e == ve[e] # for e=1:m # for every example x_e == ve[e] g[Threads.threadid()] .= 0 # reset gradient to 0 # compute gradient of L with respect to Xᵢ as follows: # ∇{Xᵢ}L = Σⱼ dLⱼ(XᵢYⱼ)/dXᵢ for f in glrm.observed_features[e] # but we have no function dLⱼ/dXᵢ, only dLⱼ/d(XᵢYⱼ) aka dLⱼ/du # by chain rule, the result is: Σⱼ (dLⱼ(XᵢYⱼ)/du * Yⱼ), where dLⱼ/du is our grad() function curgrad = grad(losses[f],XY[e,yidxs[f]],A[e,f]) if isa(curgrad, Number) axpy!(curgrad, vf[f], g[Threads.threadid()]) else # on v0.4: gemm!('N', 'T', 1.0, vf[f], curgrad, 1.0, g) gemm!('N', 'N', 1.0, vf[f], curgrad, 1.0, g[Threads.threadid()]) end end # take a proximal gradient step to update ve[e] l = length(glrm.observed_features[e]) + 1 # if each loss function has lipshitz constant 1 this bounds the lipshitz constant of this example's objective obj_by_row[e] = row_objective(glrm, e, ve[e]) # previous row objective value while alpharow[e] > params.min_stepsize stepsize = alpharow[e]/l # newx = prox(rx[e], ve[e] - stepsize*g, stepsize) # this will use much more memory than the inplace version with linesearch below ## gradient step: Xᵢ += -(α/l) * ∇{Xᵢ}L axpy!(-stepsize,g[Threads.threadid()],newve[e]) ## prox step: Xᵢ = prox_rx(Xᵢ, α/l) prox!(rx[e],newve[e],stepsize) if row_objective(glrm, e, newve[e]) < obj_by_row[e] copyto!(ve[e], newve[e]) alpharow[e] *= 1.05 # choose a more aggressive stepsize break else # the stepsize was too big; undo and try again only smaller copyto!(newve[e], ve[e]) alpharow[e] *= .7 # choose a less aggressive stepsize if alpharow[e] < params.min_stepsize alpharow[e] = params.min_stepsize * 1.1 break end end end end # for e=1:m gemm!('T','N',1.0,X,Y,0.0,XY) # Recalculate XY using the new X end # inner iteration # STEP 2: Y update for inneri=1:params.inner_iter_Y G .= 0 Threads.@threads for f=1:n # for f=1:n # compute gradient of L with respect to Yⱼ as follows: # ∇{Yⱼ}L = Σⱼ dLⱼ(XᵢYⱼ)/dYⱼ for e in glrm.observed_examples[f] # but we have no function dLⱼ/dYⱼ, only dLⱼ/d(XᵢYⱼ) aka dLⱼ/du # by chain rule, the result is: Σⱼ dLⱼ(XᵢYⱼ)/du * Xᵢ, where dLⱼ/du is our grad() function curgrad = grad(losses[f],XY[e,yidxs[f]],A[e,f]) if isa(curgrad, Number) axpy!(curgrad, ve[e], gf[f]) else # on v0.4: gemm!('N', 'T', 1.0, ve[e], curgrad, 1.0, gf[f]) gemm!('N', 'T', 1.0, ve[e], curgrad, 1.0, gf[f]) end end # take a proximal gradient step l = length(glrm.observed_examples[f]) + 1 obj_by_col[f] = col_objective(glrm, f, vf[f]) while alphacol[f] > params.min_stepsize stepsize = alphacol[f]/l # newy = prox(ry[f], vf[f] - stepsize*gf[f], stepsize) ## gradient step: Yⱼ += -(α/l) * ∇{Yⱼ}L axpy!(-stepsize,gf[f],newvf[f]) ## prox step: Yⱼ = prox_ryⱼ(Yⱼ, α/l) prox!(ry[f],newvf[f],stepsize) new_obj_by_col = col_objective(glrm, f, newvf[f]) if new_obj_by_col < obj_by_col[f] copyto!(vf[f], newvf[f]) alphacol[f] *= 1.05 obj_by_col[f] = new_obj_by_col break else copyto!(newvf[f], vf[f]) alphacol[f] *= .7 if alphacol[f] < params.min_stepsize alphacol[f] = params.min_stepsize * 1.1 break end end end end # for f=1:n gemm!('T','N',1.0,X,Y,0.0,XY) # Recalculate XY using the new Y end # inner iteration # STEP 3: Record objective obj = sum(obj_by_col) t = time() - t update_ch!(ch, t, obj) t = time() # STEP 4: Check stopping criterion obj_decrease = ch.objective[end-1] - obj if i>10 && (obj_decrease < scaled_abs_tol || obj_decrease/obj < params.rel_tol) break end if verbose && i%10==0 println("Iteration $i: objective value = $(ch.objective[end])") end end return glrm.X, glrm.Y, ch end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
4793
### Streaming method # only implemented for quadratic objectives # TODO: add quadratic regularization export StreamingParams, streaming_fit!, streaming_impute! mutable struct StreamingParams<:AbstractParams T0::Int # number of rows to use to initialize Y before streaming begins stepsize::Float64 # stepsize (inverse of memory) Y_update_interval::Int # how often to prox Y end function StreamingParams( T0::Int=1000; # number of rows to use to initialize Y before streaming begins stepsize::Number=1/T0, # (inverse of memory) Y_update_interval::Int=10 # how often to prox Y ) return StreamingParams(T0, convert(Float64, stepsize), Y_update_interval) end ### FITTING function streaming_fit!(glrm::GLRM, params::StreamingParams=StreamingParams(); ch::ConvergenceHistory=ConvergenceHistory("StreamingGLRM"), verbose=true) # make sure everything is quadratic @assert all(map(l->isa(l, QuadLoss), glrm.losses)) @assert all(map(l->isa(l, QuadReg), glrm.rx)) @assert all(map(l->isa(l, QuadReg), glrm.ry)) # initialize Y and first T0 rows of X init_glrm = keep_rows(glrm, params.T0) init_svd!(init_glrm) copy!(glrm.Y, init_glrm.Y) copy!(view(glrm.X, :, 1:params.T0), init_glrm.X) ### initialization A = glrm.A # rename these for easier local access rx = glrm.rx ry = glrm.ry X = glrm.X; Y = glrm.Y k = glrm.k m,n = size(A) # yscales = map(r->r.scale, ry) for i=params.T0+1:m # update x_i obs = glrm.observed_features[i] Yobs = Y[:, obs] Aobs = A[i, obs] xi = view(X, :, i) copy!(xi, (Yobs * Yobs' + 2 * rx[i].scale * I) \ (Yobs * Aobs)) # update objective r = Yobs'*xi - Aobs push!(ch.objective, norm(r) ^ 2) # # update Y # TODO verify this is stochastic proximal gradient (with constant stepsize) for the problem # TODO don't prox Y at every iteration # TODO don't assume scales on all the rys are equal # gY[:, jj] = xi * r' == r[jj] * xi # gradient of ith row objective wrt Y for jj in 1:length(obs) Y[:,obs[jj]] -= params.stepsize * r[jj] * xi end if i%params.Y_update_interval == 0 # prox!(ry, Y, params.stepsize * params.Y_update_interval) Y ./= (1 + 2 * params.stepsize * params.Y_update_interval * ry[1].scale) end end return X, Y, ch end ### FITTING function streaming_impute!(glrm::GLRM, params::StreamingParams=StreamingParams(); ch::ConvergenceHistory=ConvergenceHistory("StreamingGLRM"), verbose=true) # make sure everything is quadratic @assert all(map(l->isa(l, QuadLoss), glrm.losses)) @assert all(map(l->isa(l, QuadReg), glrm.rx)) @assert all(map(l->isa(l, QuadReg), glrm.ry)) # initialize Y and first T0 rows of X init_glrm = keep_rows(glrm, params.T0) init_svd!(init_glrm) copy!(glrm.Y, init_glrm.Y) copy!(view(glrm.X, :, 1:params.T0), init_glrm.X) ### initialization A = glrm.A # rename these for easier local access Ahat = copy(glrm.A) rx = glrm.rx ry = glrm.ry X = glrm.X; Y = glrm.Y k = glrm.k m,n = size(A) # yscales = map(r->r.scale, ry) for i=params.T0+1:m # update x_i obs = glrm.observed_features[i] Yobs = Y[:, obs] Aobs = A[i, obs] xi = view(X, :, i) copy!(xi, (Yobs * Yobs' + 2 * rx[i].scale * I) \ (Yobs * Aobs)) # impute not_obs = setdiff(Set(1:n), Set(obs)) if length(not_obs)>0 ahat = xi'*Y Ahat[i, not_obs] = ahat[not_obs] end # update objective r = Yobs'*xi - Aobs push!(ch.objective, norm(r) ^ 2) # # update Y # TODO verify this is stochastic proximal gradient (with constant stepsize) for the problem # TODO don't prox Y at every iteration # TODO don't assume scales on all the rys are equal # gY[:, jj] = xi * r' == r[jj] * xi # gradient of ith row objective wrt Y for jj in 1:length(obs) Y[:,obs[jj]] -= params.stepsize * r[jj] * xi end if i%params.Y_update_interval == 0 # prox!(ry, Y, params.stepsize * params.Y_update_interval) Y ./= (1 + 2 * params.stepsize * params.Y_update_interval * ry[1].scale) end end return Ahat end """ Constructs new GLRM on subset of rows of the data from input glrm """ function keep_rows(glrm, r::UnitRange{Int}) @assert maximum(r) <= size(glrm.A, 1) obs = flatten_observations(glrm.observed_features) first_row = minimum(r) if first_row > 1 new_obs = map( t -> (t[1]-first_row+1, t[2]), filter( t -> (t[1] in r), obs)) else new_obs = filter( t -> (t[1] in r), obs) end of, oe = sort_observations(new_obs, length(r), size(glrm.A, 2)) new_glrm = GLRM(glrm.A[r,:], glrm.losses, glrm.rx[r], glrm.ry, glrm.k, observed_features = of, observed_examples = oe) return new_glrm end keep_rows(glrm, T::Int) = keep_rows(glrm, 1:T)
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
5359
### Proximal gradient method export SparseProxGradParams, fit! mutable struct SparseProxGradParams<:AbstractParams stepsize::Float64 # initial stepsize max_iter::Int # maximum number of outer iterations inner_iter::Int # how many prox grad steps to take on X before moving on to Y (and vice versa) abs_tol::Float64 # stop if objective decrease upon one outer iteration is less than this min_stepsize::Float64 # use a decreasing stepsize, stop when reaches min_stepsize end function SparseProxGradParams(stepsize::Number=1.0; # initial stepsize max_iter::Int=100, # maximum number of outer iterations inner_iter::Int=1, # how many prox grad steps to take on X before moving on to Y (and vice versa) abs_tol::Float64=0.00001, # stop if objective decrease upon one outer iteration is less than this min_stepsize::Float64=0.01*stepsize) # stop if stepsize gets this small stepsize = convert(Float64, stepsize) return SparseProxGradParams(stepsize, max_iter, inner_iter, abs_tol, min_stepsize) end ### FITTING function fit!(glrm::GLRM, params::SparseProxGradParams; ch::ConvergenceHistory=ConvergenceHistory("SparseProxGradGLRM"), verbose=true, kwargs...) println(params) ### initialization A = glrm.A # rename these for easier local access losses = glrm.losses rx = glrm.rx ry = glrm.ry # at any time, glrm.X and glrm.Y will be the best model yet found, while # X and Y will be the working variables X = copy(glrm.X); Y = copy(glrm.Y) k = glrm.k m,n = size(A) # check that we didn't initialize to zero (otherwise we will never move) if norm(Y) == 0 Y = .1*randn(k,n) end # step size (will be scaled below to ensure it never exceeds 1/\|g\|_2 or so for any subproblem) alpha = params.stepsize # stopping criterion: stop when decrease in objective < tol tol = params.abs_tol * mapreduce(length,+,glrm.observed_features) # alternating updates of X and Y if verbose println("Fitting GLRM") end update_ch!(ch, 0, objective(glrm; sparse=true)) t = time() steps_in_a_row = 0 g = zeros(k) # cache views ve = [view(X,:,e) for e=1:m] vf = [view(Y,:,f) for f=1:n] for i=1:params.max_iter # STEP 1: X update for inneri=1:params.inner_iter for e=1:m # doing this means looping over XY in row-major order, but otherwise we couldn't parallelize over Xᵢs rmul!(g, 0)# reset gradient to 0 # compute gradient of L with respect to Xᵢ as follows: # ∇{Xᵢ}L = Σⱼ dLⱼ(XᵢYⱼ)/dXᵢ for f in glrm.observed_features[e] # but we have no function dLⱼ/dXᵢ, only dLⱼ/d(XᵢYⱼ) aka dLⱼ/du # by chain rule, the result is: Σⱼ (dLⱼ(XᵢYⱼ)/du * Yⱼ), where dLⱼ/du is our grad() function # our estimate for A[e,f] is given by dot(ve[e],vf[f]) axpy!(grad(losses[f],dot(ve[e],vf[f]),A[e,f]), vf[f], g) end # take a proximal gradient step l = length(glrm.observed_features[e]) + 1 rmul!(g, -alpha/l) ## gradient step: Xᵢ += -(α/l) * ∇{Xᵢ}L axpy!(1,g,ve[e]) ## prox step: Xᵢ = prox_rx(Xᵢ, α/l) prox!(rx[e],ve[e],alpha/l) end end # STEP 2: Y update for inneri=1:params.inner_iter for f=1:n rmul!(g, 0) # reset gradient to 0 # compute gradient of L with respect to Yⱼ as follows: # ∇{Yⱼ}L = Σⱼ dLⱼ(XᵢYⱼ)/dYⱼ for e in glrm.observed_examples[f] # but we have no function dLⱼ/dYⱼ, only dLⱼ/d(XᵢYⱼ) aka dLⱼ/du # by chain rule, the result is: Σⱼ dLⱼ(XᵢYⱼ)/du * Xᵢ, where dLⱼ/du is our grad() function axpy!(grad(losses[f],dot(ve[e],vf[f]),A[e,f]), ve[e], g) end # take a proximal gradient step l = length(glrm.observed_examples[f]) + 1 rmul!(g, -alpha/l) ## gradient step: Yⱼ += -(α/l) * ∇{Yⱼ}L axpy!(1,g,vf[f]) ## prox step: Yⱼ = prox_ryⱼ(Yⱼ, α/l) prox!(ry[f],vf[f],alpha/l) end end # STEP 3: Check objective obj = objective(glrm, X, Y; sparse=true) # record the best X and Y yet found if obj < ch.objective[end] t = time() - t update_ch!(ch, t, obj) copy!(glrm.X, X); copy!(glrm.Y, Y) # save new best X and Y alpha = alpha * 1.05 steps_in_a_row = max(1, steps_in_a_row+1) t = time() else # if the objective went up, reduce the step size, and undo the step alpha = alpha / max(1.5, -steps_in_a_row) if verbose println("obj went up to $obj; reducing step size to $alpha") end copy!(X, glrm.X); copy!(Y, glrm.Y) # revert back to last X and Y steps_in_a_row = min(0, steps_in_a_row-1) end # STEP 4: Check stopping criterion if i>10 && (steps_in_a_row > 3 && ch.objective[end-1] - obj < tol) || alpha <= params.min_stepsize break end if verbose && i%10==0 println("Iteration $i: objective value = $(ch.objective[end])") end end t = time() - t update_ch!(ch, t, ch.objective[end]) return glrm.X, glrm.Y, ch end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
2469
############################################################## ### copying ############################################################## import Base.copy export copy, copy_estimate, GLRM for T in :[Loss, Regularizer, AbstractGLRM].args @eval function copy(r::$T) fieldvals = [getfield(r, f) for f in fieldnames(typeof(r))] return typeof(r)(fieldvals...) end end # points to all the same problem data as the original input GLRM, # but copies the estimate of the model parameters function copy_estimate(g::GLRM) return GLRM(g.A,g.losses,g.rx,g.ry,g.k, g.observed_features,g.observed_examples, copy(g.X),copy(g.Y)) end # domains are struct, so this is ok copy(d::Domain) = d ############################################################## ### fill singleton losses and regularizers to the right shapes ############################################################## # fill an array of length n with copies of the object foo fillcopies(foo, n::Int; arraytype=typeof(foo)) = arraytype[copy(foo) for i=1:n] # singleton loss: GLRM(A, loss::Loss, rx::Array, ry::Regularizer, k::Int; kwargs...) = GLRM(A, fillcopies(loss, size(A, 2), arraytype=Loss), rx, fillcopies(ry, size(A, 2), arraytype=Regularizer), k; kwargs...) GLRM(A, loss::Loss, rx::Regularizer, ry::Array, k::Int; kwargs...) = GLRM(A, fillcopies(loss, size(A, 2), arraytype=Loss), fillcopies(rx, size(A, 1), arraytype=Regularizer), ry, k; kwargs...) GLRM(A, loss::Loss, rx::Array, ry::Array, k::Int; kwargs...) = GLRM(A, fillcopies(loss, size(A, 2), arraytype=Loss), rx, ry, k; kwargs...) # singleton regularizer on x and/or y: GLRM(A, losses::Array, rx::Regularizer, ry::Array, k::Int; kwargs...) = GLRM(A, losses, fillcopies(rx, size(A, 1), arraytype=Regularizer), ry, k::Int; kwargs...) GLRM(A, losses::Array, rx::Array, ry::Regularizer, k::Int; kwargs...) = GLRM(A, losses, rx, fillcopies(ry, size(A, 2), arraytype=Regularizer), k::Int; kwargs...) GLRM(A, losses::Array, rx::Regularizer, ry::Regularizer, k::Int; kwargs...) = GLRM(A, losses, fillcopies(rx, size(A, 1), arraytype=Regularizer), fillcopies(ry, size(A, 2), arraytype=Regularizer), k::Int; kwargs...) # singleton everything GLRM(A, loss::Loss, rx::Regularizer, ry::Regularizer, k::Int; kwargs...) = GLRM(A, fillcopies(loss, size(A, 2), arraytype=Loss), fillcopies(rx, size(A, 1), arraytype=Regularizer), fillcopies(ry, size(A, 2), arraytype=Regularizer), k::Int; kwargs...)
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
1166
using Base: depwarn Base.@deprecate GLRM(A::AbstractArray, obs::Array{Tuple{Int, Int}, 1}, args...; kwargs...) GLRM(A, args...; obs = obs, kwargs...) Base.@deprecate ProxGradParams(s::Number,m::Int,c::Float64,ms::Float64) ProxGradParams(s, max_iter=m, abs_tol=c, min_stepsize=ms) Base.@deprecate expand_categoricals expand_categoricals! Base.@deprecate errors(g::GLRM) error_metric(g) Base.@deprecate quadratic QuadLoss Base.@deprecate logistic LogisticLoss Base.@deprecate huber HuberLoss Base.@deprecate LogLoss LogisticLoss Base.@deprecate l1 L1Loss Base.@deprecate poisson PoissonLoss Base.@deprecate ordinal_hinge OrdinalHingeLoss Base.@deprecate OrdinalHinge OrdinalHingeLoss Base.@deprecate WeightedHinge WeightedHingeLoss Base.@deprecate periodic PeriodicLoss Base.@deprecate quadreg QuadReg Base.@deprecate constrained_quadreg QuadConstraint Base.@deprecate onereg OneReg Base.@deprecate zeroreg ZeroReg Base.@deprecate nonnegative NonNegConstraint Base.@deprecate onesparse OneSparseConstraint Base.@deprecate unitonesparse UnitOneSparseConstraint Base.@deprecate simplex SimplexConstraint Base.@deprecate nonneg_onereg NonNegOneReg
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
1315
module BatchUtils using ...Concepts abstract type BatchingStrategy end abstract type SequentialScan <: BatchingStrategy end abstract type SampleWithReplacement <: BatchingStrategy end abstract type SampleWithoutReplacement <: BatchingStrategy end export BatchFactory, next, reset, has_next, initialize, BatchingStrategy, SequentialScan mutable struct BatchFactory{T<:Any} n::Optional{Int64} batch_size::Optional{Int64} cur_batch::Optional{Int64} function BatchFactory{S}(; size::Int64) where S<:BatchingStrategy return new{S}(nothing, size, nothing) end function BatchFactory{S}(n, batch_size) where S<:BatchingStrategy return new{S}(n, batch_size, 1) end end function initialize(obj::BatchFactory{T}, x::Array{S, 1}) where {T<:BatchingStrategy, S<:Any} obj.n = length(x) obj.cur_batch = 1 end function next(obj::BatchFactory{SequentialScan}) start_pos = obj.batch_size * (obj.cur_batch - 1) + 1 end_pos = min(start_pos + obj.batch_size - 1, obj.n) obj.cur_batch = obj.cur_batch + 1 return start_pos:end_pos end function Base.reset(obj::BatchFactory{SequentialScan}) obj.cur_batch = 1 end function has_next(obj::BatchFactory{SequentialScan}) return obj.batch_size * (obj.cur_batch - 1) + 1 <= obj.n end end # end of BatchUtils
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
3670
using MatrixCompletion.Concepts import LinearAlgebra struct RelativeError end struct AbsoluteError end function within_radius(x;of=1e-5,at=0) return sum(Int.(abs.(x .- at) .> of)) end function Concepts.provide(object::RelativeError,x,y; metric::Any = x -> LinearAlgebra.norm(x,2), base_metric::Any=metric) return metric(x-y)/base_metric(y) end function Concepts.provide(object::AbsoluteError,x,y; metric::Any= x-> LinearAlgebra.norm(x,2)) return metric(x - y) end function Concepts.provide(object::Diagnostics{Int64}) return "int64" end function Concepts.provide(object::Diagnostics{<:Any}; reference::Optional{VecOrMatOfReals}=nothing, input_data::Optional{VecOrMatOfReals}=nothing) if isnothing(input_data) && isnothing(reference) throw(DomainError("[provide(Diagnostics)]: input_data and/or reference variable missing))")) end return Dict("relative-error[#within-radius(1e-5)]" => Concepts.provide(RelativeError(), input_data,reference, metric = x -> within_radius(x), base_metric = x -> LinearAlgebra.norm(abs.(x) .+ 1 ,0)), "absolute-error[#within-radius(1e-5)]" => Concepts.provide(AbsoluteError(), input_data, reference, metric = x -> within_radius(x)), "relative-error[#within-radius(1)]" => Concepts.provide(RelativeError(), input_data,reference, metric = x -> within_radius(x,of=1), base_metric = x -> LinearAlgebra.norm(abs.(x) .+ 1 ,0)), "absolute-error[#within-radius(1)]" => Concepts.provide(AbsoluteError(), input_data, reference, metric = x -> within_radius(x,of=1)), "relative-error[L1]" => Concepts.provide(RelativeError(), input_data,reference, metric = x -> LinearAlgebra.norm(x,1)), "absolute-error[L1]" => Concepts.provide(AbsoluteError(), input_data, reference, metric = x -> LinearAlgebra.norm(x,1)), "relative-error[L2]" => Concepts.provide(RelativeError(), input_data,reference, metric = x -> LinearAlgebra.norm(x,2)^2), "absolute-error[L2]" => Concepts.provide(AbsoluteError(), input_data,reference, metric = x -> LinearAlgebra.norm(x,2)^2) ) end # function print_diagnostics(object::Diagnostics{<:Any}; # reference::Optional{VecOrMatOfReals}=nothing, # input_data::Optional{VecOrMatOfReals}=nothing) # end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
4513
@overload function Concepts.forward_map(distribution::Union{AbstractPoisson,Type{Val{:Poisson}}}, canonical_parameter::Array{T}; non_canonical_parameter::Union{Array{Float64},Nothing} = nothing, non_canonical_map = nothing) where T<:Real if !isnothing(non_canonical_parameter) ## TODO end return exp.(canonical_parameter) end @overload function Concepts.forward_map(distribution::Union{AbstractGamma,Type{Val{:Gamma}}}, canonical_parameter::Array{T}; non_canonical_parameter::Union{Array{Float64},Nothing} = nothing, non_canonical_map = nothing) where T<:Real if !isnothing(non_canonical_parameter) ## TODO end canonical_parameter = 1 ./ exp.(canonical_parameter) return canonical_parameter # canonical_parameter = -1 .* abs.(canonical_parameter) # return -1 ./ canonical_parameter # return 1 ./ canonical_parameter end @overload function Concepts.forward_map(distribution::Union{AbstractNegativeBinomial,Type{Val{:NegativeBinomial}}}, canonical_parameter::Array{T}; non_canonical_parameter::Union{Array{Float64},Nothing} = nothing, non_canonical_map = nothing, r_estimate = nothing) where T<:Real if !isnothing(non_canonical_parameter) ## TODO end # @show(r_estimate) return r_estimate ./ (exp.(exp.(canonical_parameter)) .- 1) end @overload function Concepts.forward_map(distribution::Union{AbstractBernoulli,Type{Val{:Bernoulli}}}, canonical_parameter::Array{T}; non_canonical_parameter::Union{Array{Float64},Nothing} = nothing, non_canonical_map = nothing) where T<:Real if !isnothing(non_canonical_parameter) ## TODO end ex = exp.(canonical_parameter) return ex ./ (1 .+ ex) # return (Int.(sign.(canonical_parameter)) .+ 1) ./ 2 end @overload function Concepts.forward_map(distribution::Union{AbstractGaussian,Type{Val{:Gaussian}}}, canonical_parameter::Array{T}; non_canonical_parameter::Union{Array{Float64},Nothing} = nothing, non_canonical_map = nothing) where T<:Real if !isnothing(non_canonical_parameter) ## TODO end return canonical_parameter end @overload function Concepts.forward_map(distribution::Symbol, canonical_parameter::Array{T}; non_canonical_parameter::Union{Array{Float64},Nothing} = nothing, non_canonical_map = nothing) where T<:Real return Concepts.forward_map(Val{distribution},canonical_parameter, non_canonical_map=non_canonical_map, non_canonical_parameter=non_canonical_parameter) end @overload function Concepts.predict(distribution::Union{AbstractPoisson,Type{Val{:Poisson}}},mean::Any; custom_prediction_function=nothing) if !isnothing(custom_prediction_function) return -1.0 end return round.(mean) end @overload function Concepts.predict(distribution::Union{AbstractBernoulli,Type{Val{:Bernoulli}}},mean::Any; custom_prediction_function=nothing) if !isnothing(custom_prediction_function) return -1.0 end return Int.(mean .> 0.5) end @overload function Concepts.predict(distribution::Union{AbstractGaussian,Type{Val{:Gaussian}}},mean::Any; custom_prediction_function=nothing) if !isnothing(custom_prediction_function) return -1.0 end return mean end @overload function Concepts.predict(distribution::Union{AbstractGamma,Type{Val{:Gamma}}},mean::Any; custom_prediction_function=nothing) if !isnothing(custom_prediction_function) return -1.0 end return mean end @overload function Concepts.predict(distribution::Union{AbstractNegativeBinomial,Type{Val{:NegativeBinomial}}},mean::Any; custom_prediction_function=nothing) if !isnothing(custom_prediction_function) return -1.0 end return round.(mean) end @overload const Concepts.predict(obj::Symbol,arg1;custom_prediction_function=nothing) = Concepts.predict(Val{obj},arg1;custom_prediction_function=custom_prediction_function)
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
3217
module FastEigen export FortranArnoldiMethod, NativeLanczos, NativeEigen, NativeLOBPCG, NativeArnoldiMethod, NativeEigen, KrylovMethods, ARPACK export eigs import KrylovKit,IterativeSolvers,ArnoldiMethod,Arpack,LinearAlgebra mutable struct FortranArnoldiMethod maxiter::Union{Float64,Nothing} tol::Union{Float64,Nothing} function FortranArnoldiMethod(;maxiter=nothing,tol=nothing) instance = new(); instance.maxiter = maxiter; instance.tol = tol; return instance; end end mutable struct NativeLanczos maxiter::Union{Float64,Nothing} tol::Union{Float64,Nothing} function NativeLanczos(;maxiter=nothing,tol=nothing) instance = new(); instance.maxiter = maxiter; instance.tol = tol; return instance; end end mutable struct NativeEigen end mutable struct NativeArnoldiMethod maxiter::Union{Float64,Nothing} tol::Union{Float64,Nothing} function NativeArnoldiMethod(;maxiter=nothing,tol=nothing) instance = new(); instance.maxiter = maxiter; instance.tol = tol; return instance; end end mutable struct NativeLOBPCG maxiter::Union{Float64,Nothing} tol::Union{Float64,Nothing} function NativeLOBPCG(;maxiter=200,tol=nothing) instance = new(); instance.maxiter = maxiter; instance.tol = tol; return instance; end end struct KrylovMethods end struct ARPACK end function eigs(algorithm::KrylovMethods, x::Array{Float64, 2}; nev::Int64 = 10, order::Symbol = :LR, symmetric::Bool = true, maxiter::Int64 = 100) local λ, X if nev <= 20 λ, X = KrylovKit.eigsolve(x, nev, order;issymmetric = symmetric) else λ, X = KrylovKit.eigsolve(x, nev, order;issymmetric = symmetric, krylovdim = nev + 5, maxiter = maxiter) end X = hcat(X...) return λ[1:nev], X[:, 1:nev] end function eigs(algorithm::ARPACK, x::Array{Float64, 2}; nev::Int64 = 10, order::Symbol = :LM, symmetric::Bool = true, maxiter::Int64 = 100, tol = 0.0) local λ, X λ, X = Arpack.eigs(x, nev = nev, which = order, tol = tol, maxiter = maxiter) # @show(λ) return λ, X end function eigs(algorithm::NativeEigen,x::Array{Float64,2}; nev::Integer=6,eigen_vectors::Bool=true, order::Symbol=:LR) local eigen_val_id; eigen_decomp = LinearAlgebra.eigen(x); if order == :LR eigen_val_id = Base.partialsortperm(eigen_decomp.values,1:nev,rev=true); elseif order == :SR eigen_val_id = Base.partialsortperm(eigen_decomp.values,1:nev,rev=false) end if eigen_vectors == true return eigen_decomp.values[eigen_val_id],eigen_decomp.vectors[:,eigen_val_id] end return eigen_decomp.values[eigen_val_id]; end function eigs(algorithm::NativeLOBPCG,x::Array{Float64,2}; nev::Integer=6,eigen_vectors::Bool=true, order::Symbol=:LR) local eigen_decomp; if order == :LR eigen_decomp = IterativeSolvers.lobpcg(x,true, nev); end if order == :SR eigen_decomp = IterativeSolvers.lobpcg(x,false, nev); end if eigen_vectors == true return eigen_decomp.λ, eigen_decomp.X; end return eigen_decomp.λ end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
4116
using ..Concepts using ..ModelFitting import LinearAlgebra export IndexTracker function has_same_dimension(data) if length(data) == 0 return false end first_sz = size(data[1]) for _data in data if size(_data) != first_sz return false end end return true end mutable struct IndexTracker{T<:Any} <: AbstractTracker indices::Optional{Dict{T, Array{CartesianIndex{N}, 1}}} where N<:Any dimension::Optional{Tuple{Vararg{Int64}}} function IndexTracker{T}() where {T<:Any} return new(nothing, nothing) end function IndexTracker{T}(data::Vararg{Array{T, N}}) where {T<:Any, N<:Any} if !has_same_dimension(data) @warn("Data stream of different dimension. Won't construct.") throw(DimensionMismatch()) end new_object = new(Dict{T,Array{CartesianIndex{N}, 1}}(), size(data[1])) for _data in data disjoint_join(new_object, _data) end return new_object end end @overload function Base.getindex(object::IndexTracker{T}, i::T) where T<:Any if isnothing(object.indices) @warn "indices are not constructed." return nothing end return object.indices[i] end @overload function Base.getproperty(object::IndexTracker{T}, sym::Symbol) where T<:Any if sym == :keys return collect(keys(object.indices)) elseif sym == :dimension return getfield(object, :dimension) elseif sym == :indices return getfield(object, :indices) elseif sym == :size return object.dimension elseif sym == :dim return object.dimension end end @overload function Base.size(object::IndexTracker) return object.dimension end @overload function Concepts.provide(object::IndexTracker{T}, data::Vararg{Array{T}}) where T<:Any return IndexTracker{T}(data); end @overload function Concepts.groupby(obj::IndexTracker{T}, list::Array{T}) where T<:Any # result = Dict{T, Dict{T, Array{<:CartesianIndex}}}() result = Dict{T, Any}() for a_key in collect(unique(obj.keys)) result[a_key] = Dict{T, Array{<:CartesianIndex}}() for sym in list result[a_key][sym] = intersect(obj[a_key], obj[sym]) end end return result end # @overload # function Base.convert(::Type{Array{<:CartesianIndex}}, x::Union{Array{Int64, 1}, Array{CartesianIndex}}) # if typeof(x) <: Array{Int64,1} # return [CartesianIndex{1}(_x) for _x in x] # end # return x # end @overload function Concepts.type_conversion(::Type{Array{<:CartesianIndex}}, x::Union{Array{Int64, 1}, Array{CartesianIndex{2}, 1}}) if typeof(x) <: Array{Int64,1} return [CartesianIndex{1}(_x) for _x in x] end return x end # function disjoint_partition(a::IndexTrakcer{T}, b::Array{T, N}) where {T<:Any, N<:Any} # if isnothing(a.dimension) # a.dimension = size(b) # elseif size(a) != size(b) # @show(size(a)) # @show(size(b)) # throw(DimensionMismatch()) # end # if isnothing(a.indices) # a.indices = Dict{T, Array{CartesianIndex{N}, 1}}() # end # if length(intersect(unique(a.keys), unique(b))) > 0 # @warn("New View is not disjoint from the old") # throw(MethodError()) # end # for sym in collect(unique(b)) # # a.indices[sym] = convert(Array{<:CartesianIndex} ,findall(x -> x == sym, b)) # a.indices[sym] = type_conversion(Array{<:CartesianIndex}, findall(x -> x == sym, b)) # end # end @overload function Concepts.disjoint_join(a::IndexTracker{T}, b::Array{T, N}) where {T<:Any, N<:Any} if isnothing(a.dimension) a.dimension = size(b) elseif size(a) != size(b) @show(size(a)) @show(size(b)) throw(DimensionMismatch()) end if isnothing(a.indices) a.indices = Dict{T, Array{CartesianIndex{N}, 1}}() end if length(intersect(unique(a.keys), unique(b))) > 0 @warn("New View is not disjoint from the old") throw(MethodError()) end for sym in collect(unique(b)) # a.indices[sym] = convert(Array{<:CartesianIndex} ,findall(x -> x == sym, b)) a.indices[sym] = type_conversion(Array{<:CartesianIndex}, findall(x -> x == sym, b)) end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
39
module LossFactory function end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
1803
using Printf using PrettyTables const bad_compare_msg(obj,exp,got) = @sprintf("Expected %s to be %s, instead got %s",string(obj),string(exp),string(got)) @overload function Concepts.check(object::Type{Val{:rank}},of::Matrix{T},is::Optional{Integer}=nothing) where T<:Number if isnothing(is) return LinearAlgebra.rank(of) end got_rank = LinearAlgebra.rank(of) if got_rank == is return true end @warn bad_compare_msg(:rank,is,got_rank) return false end @overload function Concepts.check(object::Type{Val{:dimension}},of::Array{T,2},is::Optional{Tuple}=nothing) where T<:Any if isnothing(is) return size(of) end got_size = size(of) if got_size == is return true end @warn bad_compare_msg(:dimension,is,got_size) return false end @overload function Concepts.check(object::Union{Type{Val{:l2difference}},Type{Val{:l2diff}}}, a::Union{T1,Array{T1}},b::Union{T2,Array{T2}}, against::Optional{S}=nothing) where {T1<:Number,T2<:Number,S<:Real} if isnothing(against) return LinearAlgebra.norm(a-b,2) end got_diff = LinearAlgebra.norm(a-b,2) if abs(got_diff - against) < 1e-5 return true end @warn bad_compare_msg(:l2difference,against,got_diff) return false end @overload function Base.zeros(like::Array{T}) where T<:Any return zeros(size(like)) end # This is necessary due to compiler bug?? # @overload # const Concepts.check(object::Symbol,arg1) = Concepts.check(Val{object},arg1) # @overload # const Concepts.check(object::Symbol,arg1,arg2) = Concepts.check(Val{object},arg1,arg2) # @overload # const Concepts.check(object::Symbol,arg1,arg2,arg3) = Concepts.check(Val{object},arg1,arg2,arg3)
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
26
module PreProcessing end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
1958
module PrettyPrinter using Printf export append_both_ends, toprule, bottomrule, table_header, add_row function append_both_ends(str::String, token::String) return token * str * token end function Base.similar(str::String, token::Char) return token^length(str) end function toprule(col_name::Array{String}; io::IO = Base.stdout) new_rule = map(x -> Base.similar(append_both_ends(x, ""), '-'), col_name) push!(new_rule, "") @printf(io, "%s\n", foldl((x, y) -> x * "+" *y, new_rule, init="")) # @printf("%s\n", new_rule2) end function bottomrule(col_name::Array{String}; io::IO = Base.stdout) new_rule = map(x -> Base.similar(append_both_ends(x, ""), '-'), col_name) push!(new_rule, "") @printf(io, "%s\n", foldl((x, y) -> x * "+" *y, new_rule, init="")) # @printf("%s\n", new_rule2) end function header_column(names::Array{String}; io::IO = Base.stdout) transformed_names = Base.similar(names) map!(x -> append_both_ends(x, ""), transformed_names, names) push!(transformed_names, "") @printf(io, "%s\n", foldl((x, y) -> x * "|" * y, transformed_names, init="")) end function ensure_width(w::Int64, str::String) if length(str) >= w return str end return append_both_ends(str, Base.repeat(" ", trunc(Int64, (w - length(str)/2)) + 1)) end function table_header(col_names::Array{String}; io::IO = Base.stdout) # copy_col_names = map(x -> ensure_width(7, x), col_names) copy_col_names = col_names toprule(copy_col_names, io = io) header_column(copy_col_names, io = io) bottomrule(copy_col_names, io = io) end function add_row(header::Array{String}; data::Array{String}, io::IO = Base.stdout) # transformed_data = collect(zip(header, data)) transformed_data = map(x -> rpad(append_both_ends(x[2], ""), length(append_both_ends(x[1], "")), " "), collect(zip(header, data))) push!(transformed_data, "") @printf(io, "%s\n", foldl((x, y) -> x * "|" * y, transformed_data, init="")) end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
4596
using ..Concepts import Random import Distributions struct FixedRankMatrix{T<:UnivariateDistributions} <: AbstractFixedRankMatrix dist::T rank::Optional{Integer} draw @abstract_instance function FixedRankMatrix{T}() where T<:UnivariateDistributions #@debug "abstract constructor of FixedRankMatrix" return new{T}() end function FixedRankMatrix{T}(dist::T;rank::Optional{Integer}=nothing) where T<:UnivariateDistributions return new{T}(dist,rank) end end const FixedRankMatrix(dist::T;rank::Optional{Integer}=nothing) where T<:UnivariateDistributions = begin isnothing(rank) ? FixedRankMatrix{T}(dist) : FixedRankMatrix{T}(dist,rank=rank) end @overload function Concepts.provide(object::FixedRankMatrix{T};row::Integer=10,col::Integer=10) where T<:UnivariateDistributions return rand(object,row,col) end function GaussianMatrix(row::Integer,col::Integer; rank::Optional{Integer}=nothing, μ::T=0, σ::T=1) where T<:Real if isnothing(rank) return rand(Distributions.Gaussian(μ,σ),row,col) end return rand(FixedRankMatrix(Distributions.Gaussian(μ,σ),rank=rank),row,col) end function PoissonMatrix(row::Integer,col::Integer; rank::Optional{Integer}=nothing, λ = 5) where T<:Real if isnothing(rank) return rand(Distributions.Poisson(λ),row,col) end return rand(FixedRankMatrix(Distributions.Poisson(λ),rank=rank),row,col) end function BernoulliMatrix(row::Integer,col::Integer; rank::Optional{Integer}=nothing, p = 0.5) where T<:Real if isnothing(rank) return rand(Distributions.Bernoulli(p),row,col) end return rand(FixedRankMatrix(Distributions.Bernoulli(p),rank=rank),row,col) end function GammaMatrix(row::Integer,col::Integer; rank::Optional{Integer}=nothing, α=5,θ=0.5) where T<:Real if isnothing(rank) return rand(Distributions.Gamma(α,θ),row,col) end return rand(FixedRankMatrix(Distributions.Gamma(α,θ),rank=rank),row,col) end @overload function Random.rand(object::FixedRankMatrix{T},row::Integer,col::Integer) where T<:UnivariateDistributions used_rank = nothing if isnothing(object.rank) @warn "Rank is not specified. Using formula: rank= ⌊0.3 * (row ∧ col)⌋" used_rank = Int(0.3 * floor(min(row,col))) elseif object.rank > max(row,col) used_rank = min(row,col) else used_rank = object.rank end ensure_feasible(row,col,used_rank); base_matrix = Random.rand(object.dist,row,used_rank) redundant_matrix = base_matrix[:,StatsBase.sample(1:used_rank,col-used_rank)]; return hcat(base_matrix,redundant_matrix) * 1.0; end @overload function Random.rand(mixed_dists::Vector{Tuple{T,I,I}}) where {T<:FixedRankMatrix{<:UnivariateDistributions}, I<: Integer} #ensure_feasible(mixed_dists) # TODO: Make a ensure feasible function gen_mat = mapreduce(x -> rand(x[1],x[2],x[3]),(x,y)->hcat(x,y),mixed_dists); return gen_mat; end function ensure_feasible(row::T,col::T,rank::T) where T<:Integer if col <0 || row <0 throw(DomainError("The dimension of the matrix should be positive integers.")) end if rank <= 0 || rank > min(row,col) throw(DomainError("The rank of the matrix should be a positive integer less than min(row,col)")) end end """ Generate a random matrix of given rank with distribution of 'dist' of given size (rol,col) from user input. Precondition(s): 1. The distribution has to be an element from the "Distributions.jl" and of subtype "Univariate". """ # function rand(dist::T,row::I,col::I;target_rank::I) where {T<:UnivariateDistributions,I<:Integer} # ensure_feasible(row,col,target_rank); # base_matrix = Random.rand(dist,row,target_rank) # redundant_matrix = base_matrix[:,StatsBase.sample(1:target_rank,col-target_rank)]; # return hcat(base_matrix,redundant_matrix) * 1.0; # end """ Generate a random matrix of consisting multiple types of distributions. Precondition(s): 1. length(mixed_dists) has to be >= 1. """ # function rand(mixed_dists::Vector{Tuple{T,Pair{I,I},I}}) where {T<:UnivariateDistributions,I<:Integer} # _ensure_feasible(mixed_dists) # gen_mat = mapreduce(x -> rand(x[1],x[2].first,x[2].second;target_rank = x[3]),(x,y)->hcat(x,y),mixed_dists); # return gen_mat; # end # end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
2987
# import ..Concepts:AbstractSamplingModels, # BernoulliModel, # VecOrMatOfNumbers, # provide using ..Concepts import StatsBase struct Sampler{T<:AbstractSamplingModels} model::T draw function Sampler{BernoulliModel}() # abstract type constructor return new{BernoulliModel}() end function Sampler{UniformModel}() # abstract type constructor return new{UniformModel}() end function Sampler{NonUniformModel}() # abstract type constructor return new{NonUniformModel}() end function Sampler{BernoulliModel}(model::BernoulliModel) draw = begin function(x::VecOrMatOf{Number}) if isa(x,Vector) n = length(x) mask = [rand(Distributions.Bernoulli(model.rate)) == 1 ? 1 : missing for i in 1:n] return mask .* x end n,m = size(x); mask = [rand(Distributions.Bernoulli(model.rate)) == 1 ? 1 : missing for i in 1:n,j in 1:m] return mask .* x end end return new{BernoulliModel}(model,draw) end function Sampler{UniformModel}(model::UniformModel) draw = begin function(x::VecOrMatOf{T}) where T<:Any sampled_object = nothing if isa(x,Vector) n = length(x) mask = [CartesianIndex(i) for i in StatsBase.sample(1:n,Int.(n * model.rate))] # sampled_object = convert(MaybeMissing{T},Array{Missing}(undef,n)) sampled_object = type_conversion(MaybeMissing{T},Array{Missing}(undef,n)) for i in mask sampled_object[i] = x[i] end else row,col = size(x) mask = [CartesianIndex(StatsBase.sample(1:row),StatsBase.sample(1:col)) for i in 1:Int.(row * col * model.rate)] # display(mask) # sampled_object = convert(MaybeMissing{T},Array{Missing,2}(undef,row,col)) sampled_object = type_conversion(MaybeMissing{T},Array{Missing,2}(undef,row,col)) # display(sampled_object) # display(x) for i in mask sampled_object[i] = x[i] end end return sampled_object end end return new(model,draw) end end const Sampler(model::BernoulliModel) = Sampler{BernoulliModel}(model) const Sampler(model::UniformModel) = Sampler{UniformModel}(model) @overload function Concepts.provide(object::Sampler{Concepts.BernoulliModel};rate) return Sampler(BernoulliModel(rate)) end @overload function Concepts.provide(object::Sampler{Concepts.UniformModel};rate) return Sampler(UniformModel(rate)) end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
429
module Utilities using ..Concepts import Distributions import LinearAlgebra # export ErrorMatrix, # relative_error, # total_error include("./Misc.jl") include("./Diagnostics.jl") include("./ExponentialFamily.jl") include("./FastEigen.jl") include("./RandomMatrices.jl") include("./Indexing.jl") include("./Sampling.jl") include("./BatchUtils.jl") include("./PrettyPrinter.jl") # include("./TestModule.jl") end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
4941
using Test import Random import Distributions import StatsBase import MatrixCompletion.Utilities.Indexing:_check_bernoulli, _check_gaussian,_check_poisson bernoulliMatrixTest1 = Random.rand(Distributions.Bernoulli(0.5),100); nonBernoulliMatrixTest1 = Random.rand(Distributions.Uniform(1,10),100); poissonMatrixTest1 = Random.rand(Distributions.Poisson(3),100); nonPoissonMatrixTest1 = Random.rand(Distributions.Uniform(1,10),100); poissonBernoulliDifferenceTest1 = Random.rand(Distributions.Poisson(3),100); poissonBernoulliDifferenceTest2 = Random.rand(Distributions.Bernoulli(0.4),100); @test _check_bernoulli(bernoulliMatrixTest1) == true @test _check_bernoulli(nonBernoulliMatrixTest1) == false @test _check_poisson(poissonMatrixTest1) == true @test _check_poisson(nonBernoulliMatrixTest1) == false @test _check_bernoulli(poissonBernoulliDifferenceTest1) == false @test _check_poisson(poissonBernoulliDifferenceTest1) == true @test _check_poisson(poissonBernoulliDifferenceTest2) == false @test _check_bernoulli(poissonBernoulliDifferenceTest2) == true import MatrixCompletion.Utilities.Indexing:construct_type_matrix,construct_index_tracker,DIST_FLAGS import MatrixCompletion.Utilities.Indexing:Bernoulli, Poisson, Gaussian, Gamma, NegativeBinomial # test 1: bernoulli only type_matrix_test_input1 = Random.rand(Distributions.Bernoulli(0.5),5,5) type_matrix_test_expected1 = Array{Union{DIST_FLAGS,Missing}}(undef,5,5) fill!(type_matrix_test_expected1,Bernoulli) @test construct_type_matrix(type_matrix_test_input1) == type_matrix_test_expected1 construct_type_matrix(type_matrix_test_input1) # test 2: poisson only type_matrix_test_input2 = Random.rand(Distributions.Poisson(5),5,5) type_matrix_test_expected2 = Array{Union{DIST_FLAGS,Missing}}(undef,5,5) fill!(type_matrix_test_expected2,Poisson) @test construct_type_matrix(type_matrix_test_input2) == type_matrix_test_expected2 # test 3: gaussian only type_matrix_test_input3 = Random.rand(Distributions.Gaussian(0,1),5,5) type_matrix_test_expected3 = Array{Union{DIST_FLAGS,Missing}}(undef,5,5) fill!(type_matrix_test_expected3,Gaussian) @test construct_type_matrix(type_matrix_test_input3) == type_matrix_test_expected3 import MatrixCompletion.Utilities.RandomMatrices.rand # test4 type_matrix_test_input4 = rand([(Distributions.Bernoulli(0.5),50=>25,10),(Distributions.Gaussian(5,10),50=>25,10)]) type_matrix_test_expected4_part1 = Array{Union{DIST_FLAGS,Missing}}(undef,50,25) fill!(type_matrix_test_expected4_part1,Bernoulli) type_matrix_test_expected4_part2 = Array{Union{DIST_FLAGS,Missing}}(undef,50,25) fill!(type_matrix_test_expected4_part2,Gaussian) type_matrix_test_expected4 = hcat(type_matrix_test_expected4_part1,type_matrix_test_expected4_part2) @test construct_type_matrix(type_matrix_test_input4) == type_matrix_test_expected4 import MatrixCompletion.Utilities.Indexing:IndexTracker import MatrixCompletion.Utilities.Indexing:construct_index_tracker # INDEX TRACKER TEST 1 id_tracker_test_input1 = construct_type_matrix(Random.rand(Distributions.Gaussian(0,1),10,10)) id_tracker_test_output1 = construct_index_tracker(input_type_matrix = id_tracker_test_input1) id_tracker_test_expect1_gaussian = [CartesianIndex(i,j) for i in 1:10 for j in 1:10] @test sort(id_tracker_test_expect1_gaussian) == sort(id_tracker_test_output1.Gaussian) @test isempty(id_tracker_test_output1.Gamma) @test isempty(id_tracker_test_output1.Bernoulli) @test isempty(id_tracker_test_output1.Poisson) @test isempty(id_tracker_test_output1.NegativeBinomial) @test isempty(id_tracker_test_output1.Missing) # INDEX TRACKER TEST 2 id_tracker_test_input2 = construct_type_matrix(rand([(Distributions.Bernoulli(0.5), 100=>25, 10), (Distributions.Gaussian(5,10), 100=>25, 10), (Distributions.Poisson(10), 100=>25, 10), (Distributions.Gaussian(0,1), 100=>25, 10)])) id_tracker_test_output2 = construct_index_tracker(input_type_matrix = id_tracker_test_input2) id_tracker_test_expect2_gaussian = [CartesianIndex(i,j) for i in 1:100 for j in [26:50;76:100]] id_tracker_test_expect2_bernoulli = [CartesianIndex(i,j) for i in 1:100 for j in 1:25] id_tracker_test_expect2_poisson = [CartesianIndex(i,j) for i in 1:100 for j in 51:75] @test sort(id_tracker_test_output2.Gaussian) == sort(id_tracker_test_expect2_gaussian) @test sort(id_tracker_test_output2.Bernoulli) == sort(id_tracker_test_expect2_bernoulli) @test sort(id_tracker_test_output2.Poisson) == sort(id_tracker_test_expect2_poisson) @test isempty(id_tracker_test_output2.Missing) @test isempty(id_tracker_test_output2.Gamma) @test isempty(id_tracker_test_output2.NegativeBinomial)
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
4830
using MatrixCompletion import Pkg macro ensure_package(name::String) if haskey(Pkg.installed(), name) == false Pkg.add(name) end end @ensure_package("TimerOutputs") @ensure_package("HDF5") @ensure_package("JSON") @ensure_package("DataFrames") @ensure_package("Distributions") using TimerOutputs using Test, Printf using HDF5 using JSON using DataFrames import Distributions, Random import Serialization function unit_test_train_subloss(dist = Poisson(); gradient_eval = Losses.provide(Loss{Poisson}()), input_distribution = Distributions.Poisson(5), input_size = 500, ρ = 0, step_size = 0.1, max_iter = 100) y = rand(input_distribution, input_size) * 1.0 mle_x = train(gradient_eval, fx = rand(input_size), y = y, c = zeros(input_size), ρ = ρ, iter = max_iter, γ = step_size); prediction = predict(dist,forward_map(dist,mle_x)) return provide(Diagnostics{Poisson()}(), input_data=prediction, reference=y) end # struct MatrixCompletionModel end # function predict(model::MatrixCompletionModel; # completed_matrix, type_tracker) # predicted_matrix = similar(completed_matrix) # for dist in keys(type_tracker.indices) # idx = type_tracker[convert(Symbol,dist)] # predicted_matrix[idx] .= predict(dist, forward_map(dist, completed_matrix[idx])) # end # return predicted_matrix # end # function Base.convert(::Type{T} function Base.truncate(::Type{Dict{String, Number}}, object::Dict{String, T}) where T<:Any return convert(Dict{String, Number}, filter(x -> typeof(x.second) <: Number, object)) end function log_simulation_result(dist::ExponentialFamily, completed_matrix, truth_matrix, type_tracker, tracker; io = Base.stdout) predicted_matrix = similar(completed_matrix) predicted_matrix[type_tracker[convert(Symbol,dist)]] .= predict(dist, forward_map(dist, completed_matrix[type_tracker[convert(Symbol, dist)]])) summary_missing_only = provide(Diagnostics{Any}(), reference = truth_matrix[tracker[convert(Symbol, dist)][:Missing]], input_data = predicted_matrix[tracker[convert(Symbol, dist)][:Missing]]) @printf(io, "\nSummary on %s (Only Missing)\n%s\n", string(convert(Symbol, dist)), repeat("-", 80)) show(io, MIME("text/plain"), summary_missing_only) print(io, "\n\n") summary_all = provide(Diagnostics{Any}(), reference = truth_matrix[type_tracker[convert(Symbol, dist)]], input_data = predicted_matrix[type_tracker[convert(Symbol, dist)]]) @printf(io, "\nSummary on %s (Missing && Observed)\n%s\n", string(convert(Symbol, dist)), repeat("-", 80)) show(io, MIME("text/plain"), summary_all) print(io, "\n\n") # show(io, MIME("text/plain"), timer) # close(io) end function Base.convert(::Type{Array}, object::Tuple{T, T}) where T return [object[1],object[2]] end function Base.convert(::Type{Array}, object::Array{Tuple{T, T}}) where T<:Real converted = Array{T, 2}(undef, length(object), 2) for col in 1:length(object) converted[col,:] .= convert(Array, object[col]) end return converted end function Serialization.serialize(object::T) where T<:Number return object end function Serialization.serialize(object::Array{T}) where T<:Real return object end function Serialization.serialize(object::Array{T}) where T<:CartesianIndex return convert(Array, convert.(Tuple, object)) end function Serialization.serialize(object::Dict) return JSON.json(object) end function Serialization.serialize(object::Tuple) return object end function pickle(filepath::String, data::AbstractDict) h5open(filepath, "w") do file for (k, v) in data write(file, String(k), Serialization.serialize(v)) end end end function pickle(filepath::String, vars...) h5open(filepath, "w") do file for v in vars write(file, v.first, Serialization.serialize(v.second)) end end end function read_pickled(filepath::String, var_name) c = h5open(filepath, "r") do file read(file, var_name); end; return c end # const GLOBAL_SIMULATION_RESULTS_DIR = "/home/jasonsun0310/datavolume/matrix_completion_simulation_result/" const GLOBAL_SIMULATION_RESULTS_DIR = "/home/jasonsun/mcdata/"
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
9648
using Test,Printf,LinearAlgebra import Distributions using MatrixCompletion # import Random,Distributions # import MatrixCompletion.Losses # import MatrixCompletion.Losses:train,SGD,train_logistic # import MatrixCompletion.Convex.ADMM:complete # import MatrixCompletion.Utilities.RandomMatrices:rand # import MatrixCompletion.Utilities.Sampling:sample,BernoulliModel # import MatrixCompletion.Utilities.Indexing:construct_index_tracker,construct_type_matrix # import MatrixCompletion.Utilities.Indexing:Bernoulli,Gaussian,Poisson,Gamma,NegativeBinomial,Missing,DIST_FLAGS # import MatrixCompletion.Convex.ADMM:MatrixCompletionModel, # predict, # _get_column_distribution_type, # _get_complete_type_matrix, # _predict_bernoulli, # _predict_poisson, # _predict_gamma, # _predict_negative_binomial, # _predict_gaussian # using MatrixCompletion.Utilities # function test_train_logistic(;size = 1000,ρ = 0.1,γ = 0.2,maxIter = 20) # y = Int.(Random.bitrand(size)); # mle_x = train(Losses.Logistic(), Random.rand(size), y, zeros(size), ρ, iter = maxIter, γ = γ); # @test sum((Int.(sign.(mle_x)) .+ 1) / 2 .== y) # size > 0.99 # end # test_train_logistic() # # function test_train_logistic_optimized(f;size = 1000,ρ = 0.1,γ = 0.2,maxIter = 20) # y = Int.(Random.bitrand(size)); # mle_x = train_logistic(Random.rand(size), y, zeros(size), ρ, iter = maxIter, γ = γ); # @test sum((Int.(sign.(mle_x)) .+ 1) / 2 .== y) / size > 0.99 # end # function test_train_logistic_sgd(size = 3000 * 9000, ρ = 0.1, γ = 0.2, ep = 0) # y = Int.(Random.bitrand(size)); # mle_x = train(SGD(), Losses.Logistic(), Random.rand(size), y, zeros(size), ρ, epoch = ep, γ = γ, num_of_batch = 20); # print(sum((Int.(sign.(mle_x)) .+ 1) / 2 .== y) / size); # @test sum((Int.(sign.(mle_x)) .+ 1) / 2 .== y) / size > 0.99 # end # function unit_test_train_poisson(;sz = 500,ρ = 0,step_size = 0.1,maxIter = 100) # # sz = 1000 # # max_iter = 200 # # γ = 0.1 # # ρ = 0 # y = Random.rand(Distributions.Poisson(10), sz) * 1.0 # mle_x = train(Losses.Poisson(), Random.rand(sz), y, zeros(sz), ρ, iter = max_iter, γ = step_size); # recoveredX = round.(exp.(mle_x)); # errRate = sum(abs.(recoveredX .- y) .> 1) / sz; # # @test 1 - errRate >= 0.99 # return 1- errRate; # end # function POISSON_SMALL_TEST_SET_LOOSE() # @test unit_test_train_poisson(sz=1000,ρ=0,step_size=0.1,maxIter=200) > 0.9 # @test unit_test_train_poisson(sz=3000,ρ=0,step_size=0.1,maxIter=200) > 0.9 # @test unit_test_train_poisson(sz=5000,ρ=0,step_size=0.1,maxIter=200) > 0.9 # @test unit_test_train_poisson(sz=1000,ρ=0.1,step_size=0.1,maxIter=200) > 0.9 # @test unit_test_train_poisson(sz=3000,ρ=0.1,step_size=0.1,maxIter=200) > 0.9 # @test unit_test_train_poisson(sz=5000,ρ=0.1,step_size=0.1,maxIter=200) > 0.9 # end # function test_train_gamma(;size = 500,ρ = 0.05,γ = 0.1,maxIter = 100) # end # function test_train_negative_binomial(;size = 500,ρ = 0.05,γ = 0.1,maxIter = 100) # end # function test_complete_type_matrix() # test1_input = Array{Union{Missing,DIST_FLAGS},2}(undef, 10, 10) # test1_input[:,1:2] .= Ref(Gaussian); # test1_input[:,3:4] .= Ref(Bernoulli); # test1_input[:,5:6] .= Ref(Gamma); # test1_input[:,7:8] .= Ref(Poisson); # test1_input[:,9:10] .= Ref(NegativeBinomial); # test1_expect = deepcopy(test1_input); # test1_input[diagind(test1_input)] .= missing; # test1_output = _get_complete_type_matrix(test1_input); # @test test1_output == test1_expect; # test2_input = Array{DIST_FLAGS,2}(undef, 10, 10) # test2_input[:,1:2] .= Ref(Gaussian); # test2_input[:,3:4] .= Ref(Bernoulli); # test2_input[:,5:6] .= Ref(Gamma); # test2_input[:,7:8] .= Ref(Poisson); # test2_input[:,9:10] .= Ref(NegativeBinomial); # test2_expect = deepcopy(test2_input); # test2_output = _get_complete_type_matrix(test2_input); # @test test2_output == test2_expect; # end # function test_predict_bernoulli() # size = 500;ρ = 0.1;γ = 0.1;maxIter = 500; # y = Int.(Random.bitrand(size)); # mle_x = train(Losses.Logistic(), Random.rand(size), y, zeros(size), ρ, iter = maxIter, γ = γ); # @test sum(_predict_bernoulli(mle_x) .== y) / size > 0.99 # end # test_predict_bernoulli() using MatrixCompletion # function unit_test_admm(;input_matrix, = rand(Distributions.Gaussian(0,1),500,500,3), # distribution_type_matrix = provide() # sampling_model = BernoulliModel(), # sampling_rate = 0.8, # max_iter_inner_gradient_descent = 3, # max_iter_admm = 200, # stop_tol_admm = 1e-5, # debug_mode = false, # use_auto_diff = true, # λ = 5e-1, # μ = 5e-4, # σ = 0.3, # τ = 1.618) # end function accuracyImputedBinaryPart(;truth::Array{Float64,2} = nothing, completedMatrix::Array{Float64,2} = nothing) typeM = construct_type_matrix(truth); # binaryColumns = find(x->x==BINARY,typeM[1,:]); binaryColumns = findall(x->x == Bernoulli, typeM[1,:]); imputedBinaryPart = (sign.(completedMatrix[:,binaryColumns]) .+ 1) / 2 return sum(Int.(truth[:,binaryColumns] .== imputedBinaryPart)) / (length(binaryColumns) * size(truth)[1]); end function accuracyImputedContinuousPart(;truth::Array{Float64,2} = nothing,completedMatrix::Array{Float64,2} = nothing) typeM = construct_type_matrix(truth); continuousColumns = findall(x->x == Gaussian, typeM[1,:]) imputedContinuousPart = completedMatrix[:,continuousColumns]; imputedContinuousPart - truth[:,continuousColumns] return norm(imputedContinuousPart - truth[:,continuousColumns])^2 / norm(truth[:,continuousColumns])^2 end function test_admm_with_autodiff_smallinput(;gd_iter = 3,dbg = false) admm_test_matrix1 = rand([(Distributions.Bernoulli(0.7), 100 => 50, 3),(Distributions.Gaussian(3, 1), 100 => 50, 3)]) admm_test_matrix_missing1 = sample(BernoulliModel(), x = admm_test_matrix1, rate = 0.8) @time admm_test_matrix_output_1 = complete(A = admm_test_matrix_missing1, maxiter = 200, use_autodiff = true, gd_iter = gd_iter, debug_mode = dbg); gaussian_acc = accuracyImputedContinuousPart(truth = admm_test_matrix1, completedMatrix = admm_test_matrix_output_1) bernoulli_acc = accuracyImputedBinaryPart(truth = admm_test_matrix1, completedMatrix = admm_test_matrix_output_1) @printf("gaussian acc: %f\n", gaussian_acc) @printf("bernoulli acc: %f\n",bernoulli_acc) end function test_admm_without_autodiff_smallinput(;gd_iter = 3,dbg = false) admm_test_matrix1 = rand([(Distributions.Bernoulli(0.7), 100 => 50, 3),(Distributions.Gaussian(3, 1), 100 => 50, 3)]) admm_test_matrix_missing1 = sample(BernoulliModel(), x = admm_test_matrix1, rate = 0.8) @time admm_test_matrix_output_1 = complete(A = admm_test_matrix_missing1, maxiter = 200, use_autodiff = false, gd_iter = gd_iter, debug_mode = dbg) gaussian_acc = accuracyImputedContinuousPart(truth = admm_test_matrix1, completedMatrix = admm_test_matrix_output_1) bernoulli_acc = accuracyImputedBinaryPart(truth = admm_test_matrix1, completedMatrix = admm_test_matrix_output_1) @printf("gaussian acc: %f\n", gaussian_acc) @printf("bernoulli acc: %f\n",bernoulli_acc) end function test_admm_without_autodiff_largeinput(;gd_iter = 3,dbg = false) admm_test_matrix1 = rand([(Distributions.Bernoulli(0.7), 6000 => 3000, 10),(Distributions.Gaussian(3, 1), 6000 => 3000, 10)]) admm_test_matrix_missing1 = sample(BernoulliModel(), x = admm_test_matrix1, rate = 0.8) @time admm_test_matrix_output_1 = complete(A = admm_test_matrix_missing1, maxiter = 200, use_autodiff = false, gd_iter = gd_iter, debug_mode = dbg) gaussian_acc = accuracyImputedContinuousPart(truth = admm_test_matrix1, completedMatrix = admm_test_matrix_output_1) bernoulli_acc = accuracyImputedBinaryPart(truth = admm_test_matrix1, completedMatrix = admm_test_matrix_output_1) end # # # # admm_test_matrix2 = rand([(Distributions.Bernoulli(0.7),5000=>2500,100),(Distributions.Gaussian(3,1),5000=>2500,100)]) # admm_test_matrix_missing2 = sample(BernoulliModel(),x = admm_test_matrix2,rate = 0.8) # # a = construct_type_matrix(admm_test_matrix2) # construct_index_trakcer(input_type_matrix=a) # admm_test_matrix_output_2 = complete(A = admm_test_matrix_missing2) # accuracyImputedContinuousPart(truth=admm_test_matrix2,completedMatrix = admm_test_matrix_output_2) # accuracyImputedBinaryPart(truth=admm_test_matrix2,completedMatrix = admm_test_matrix_output_2) # # # # # # # _get_column_distribution_type(type_mat[:,1]) # # _get_column_distribution_type(type_mat[:,51]) # # type_mat[:,90] .= Ref(_get_column_distribution_type(type_mat[:,51])) # # # complete_type_mat = _get_complete_type_matrix(type_mat) # complete_type_mat[:,90] # predict(x=ot,obs=type_mat) # # # MatrixCompletionModel(observed=admm_test_matrix_missing1,completed=ot,type_matrix=type) # # # test_train_logistic() # test_train_poisson() # test_complete_type_matrix()
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
1616
# include("admm_test.jl") # @time test_train_logistic() # @time test_train_logistic_optimized() # @time test_train_logistic(size=1000*1000) # @time test_train_logistic_optimized(size=1000*1000) # function test_admm_without_autodiff_smallinput(;gd_iter = 3,dbg = false) # admm_test_matrix1 = rand([(Distributions.Bernoulli(0.7), 100 => 50, 3),(Distributions.Gaussian(3, 1), 100 => 50, 3)]) # admm_test_matrix_missing1 = sample(BernoulliModel(), x = admm_test_matrix1, rate = 0.8) # @time admm_test_matrix_output_1 = complete(A = admm_test_matrix_missing1, maxiter = 200, use_autodiff = false, gd_iter = gd_iter, debug_mode = dbg) # gaussian_acc = accuracyImputedContinuousPart(truth = admm_test_matrix1, completedMatrix = admm_test_matrix_output_1) # bernoulli_acc = accuracyImputedBinaryPart(truth = admm_test_matrix1, completedMatrix = admm_test_matrix_output_1) # @printf("gaussian acc: %f\n", gaussian_acc) # @printf("bernoulli acc: %f\n",bernoulli_acc) # end @testset "$(format("ADMM Algorithm: Small Input[Gaussian + Bernoulli]"))" begin let truth_matrix = rand([(FixedRankMatrix(Distributions.Gaussian(0, 1), rank = 5), 200, 100), (FixedRankMatrix(Distributions.Bernoulli(0.5), rank = 5), 200, 100)]) sample_model = provide(Sampler{BernoulliModel}, rate = 0.8) input_matrix = sample_model.draw(truth_matrix) end end # test_admm_with_autodiff_smallinput(gd_iter=3,dbg=true) # test_admm_without_autodiff_smallinput(gd_iter=3) # test_admm_without_autodiff_largeinput(gd_iter=3,dbg=true) #@time POISSON_SMALL_TEST_SET_LOOSE()
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
206
function test_scope() local eigen_v; for i = 1:5 eigen_v = 1; end return eigen_v end function test_hello() print("hello") end function test_emacs() print("hello") end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
8506
module Tst include("abstract_unittest_functions.jl") using Test,TimerOutputs,Printf using HDF5 using JSON using DataFrames import Distributions, Random import Serialization using MatrixCompletion # legacy code to be refactored soon!! # const to = TimerOutput() #==============================================================================# # TEST OPTIONS # #==============================================================================# const TEST_OPTION_PRINT_TIMER = false const TEST_OPTION_SMALL_INPUT = false const TEST_OPTION_MEDIUM_INPUT = false const TEST_OPTION_LARGE_INPUT = false const TEST_OPTION_USE_AUTOGRAD = false const TEST_OPTION_TEST_R_WRAPPER = false #==============================================================================# # SUBMODULE FLAGS # #==============================================================================# const FLAG_TEST_CONCEPTS = false const FLAG_TEST_SAMPLING = false const FLAG_TEST_MISC = false const FLAG_TEST_RANDOM_OBJECTS = false const FLAG_TEST_DIAGNOSTICS = false const FLAG_TEST_EXPONENTIAL_FAMILY = false const FLAG_TEST_INDEXING_TOOLS = false const FLAG_TEST_SPARSE_EIGEN = false const FLAG_TEST_BETTER_MGF = false const FLAG_TEST_ESTIMATOR_MLE = false const FLAG_TEST_ESTIMATOR_MOM = false const FLAG_TEST_MODEL_FITTING = false const FLAG_TEST_LOSS_OPTIMIZER_POISSON = false const FLAG_TEST_LOSS_OPTIMIZER_BERNOULLI = false const FLAG_TEST_LOSS_OPTIMIZER_GAMMA = false const FLAG_TEST_LOSS_OPTIMIZER_GAUSSIAN = false const FLAG_TEST_LOSS_OPTIMIZER_NEGATIVE_BINOMIAL = false const FLAG_TEST_LOSS_OPTIMIZER_MULTINOMIAL = false const FLAG_TEST_ALGO_ADMM = false const FLAG_TEST_LIB_MATH = false const FLAG_TEST_PRETTY_PRINTER = false const FLAG_TEST_UTILITY_BATCHUTILS = false const FLAG_TEST_SGD_BERNOULLI = false const FLAG_TEST_SGD_GAMMA = false const FLAG_TEST_CHAINED_ADMM = true const FLAG_TEST_ALGO_ALM = false # TODO const FLAG_TEST_ALGO_ADMM_PARALLELL = false const FLAG_TEST_ALGO_SVT = false const FLAG_TEST_ALGO_ONEBIT = false const FLAG_TEST_ALGO_OPTSPACE = false #==============================================================================# # SIMULATION FLAGS # #==============================================================================# const FLAG_SIMULATION_ADMM_GAMMA = false const FLAG_SIMULATION_ADMM_BERNOULLI = false const FLAG_SIMULATION_ADMM_GAUSSIAN = false const FLAG_SIMULATION_ADMM_POISSON = false const FLAG_SIMULATION_ADMM_GAUSSIAN_BERNOULLI = false const FLAG_SIMULATION_ADMM_NEGATIVE_BINOMIAL = false const FLAG_SIMULATION_ADMM_MIXED = false #==============================================================================# # VISUALIZATION FLAGS # #==============================================================================# const FLAG_VISUAL_RANDOM_OBJECTS = false #==============================================================================# # SIMULATION SCRIPTS # #==============================================================================# FLAG_SIMULATION_ADMM_GAMMA ? include("simulation_runner_gamma.jl") : @info @sprintf("Skipped: Simulation[vary rank] Gamma") FLAG_SIMULATION_ADMM_BERNOULLI ? include("simulation_runner_bernoulli.jl") : @info @sprintf("Skipped: Simulation[vary rank] Bernoulli") FLAG_SIMULATION_ADMM_GAUSSIAN ? include("simulation_runner_gaussian.jl") : @info @sprintf("Skipped: Simulation[vary rank] Gaussian") FLAG_SIMULATION_ADMM_POISSON ? include("simulation_runner_poisson.jl") : @info @sprintf("Skipped: Simulation[vary rank] Poisson") FLAG_SIMULATION_ADMM_NEGATIVE_BINOMIAL ? include("simulation_runner_negbin.jl") : @info @sprintf("Skipped: Simulation[vary rank] NegativeBinomial") FLAG_SIMULATION_ADMM_GAUSSIAN_BERNOULLI ? include("simulation_runner_gaussian_bernoulli.jl") : @info @sprintf("Skipped: Simulation Gaussian + Bernoulli") FLAG_SIMULATION_ADMM_MIXED ? include("simulation_runner_mixed.jl") : @info @sprintf("Skipped: Simulation Mixed") #==============================================================================# # TEST SCRIPTS # #==============================================================================# FLAG_TEST_MISC ? include("test_runner_misc.jl") : @info @sprintf("Skipped: Miscellaneous Test\n") FLAG_TEST_RANDOM_OBJECTS ? include("test_runner_random_objects.jl") : @info @sprintf("Skipped: Random Objects Test\n") FLAG_TEST_SAMPLING ? include("test_runner_sampling.jl") : @info @sprintf("Skipped: Sampling Test\n") FLAG_TEST_SPARSE_EIGEN ? include("test_runner_sparse_eigen.jl") : @info @sprintf("Skipped: Sparse Eigen Test\n") FLAG_TEST_INDEXING_TOOLS ? include("test_runner_indexing.jl") : @info @sprintf("Skipped: Indexing Tracker Test\n") FLAG_TEST_CONCEPTS ? include("test_runner_concepts.jl") : @info @sprintf("Skipped: Concepts Test\n") FLAG_TEST_DIAGNOSTICS ? include("test_runner_diagnostics.jl") : @info @sprintf("Skipped: Diagnostics Test\n") FLAG_TEST_EXPONENTIAL_FAMILY ? include("test_runner_exponential_family.jl") : @info @sprintf("Skipped: Exponential Family Test\n") FLAG_TEST_BETTER_MGF ? include("test_runner_better_mgf.jl") : @info @sprintf("Skipped: MGF Test\n") FLAG_TEST_ESTIMATOR_MLE ? include("test_runner_estimator_mle.jl") : @info @sprintf("Skipped: MLE Test\n") FLAG_TEST_ESTIMATOR_MOM ? include("test_runner_estimator_mom.jl") : @info @sprintf("Skipped: MOM Test\n") FLAG_TEST_MODEL_FITTING ? include("test_runner_model_fitting.jl") : @info @sprintf("Skipped: Model Fitting Test\n") FLAG_TEST_LOSS_OPTIMIZER_POISSON ? include("test_runner_poisson_loss.jl") : @info @sprintf("Skipped: Poisson Loss Test\n") FLAG_TEST_LOSS_OPTIMIZER_BERNOULLI ? include("test_runner_bernoulli_loss.jl") : @info @sprintf("Skipped: Bernoulli Loss Test\n") FLAG_TEST_LOSS_OPTIMIZER_GAMMA ? include("test_runner_gamma_loss.jl") : @info @sprintf("Skipped: Gamma Loss Test\n") FLAG_TEST_LOSS_OPTIMIZER_NEGATIVE_BINOMIAL ? include("test_runner_negative_binomial_loss.jl") : @info @sprintf("Skipped: Bernoulli Loss Test\n") FLAG_TEST_ALGO_ADMM ? include("test_runner_admm_small_input.jl") : @info @sprintf("Skipped: ADMM Small Input Test\n") FLAG_TEST_LIB_MATH ? include("test_runner_lib_math.jl") : @info @sprintf("Skipped: Math Library Test\n") FLAG_TEST_PRETTY_PRINTER ? include("test_runner_pretty_printer.jl") : @info @sprintf("Skipped: Pretty Printer\n") FLAG_TEST_UTILITY_BATCHUTILS ? include("test_runner_batch_utils.jl") : @info @sprintf("Skipped: Utility[Batch Utils]") FLAG_TEST_SGD_BERNOULLI ? include("test_runner_sgd_bernoulli.jl") : @info @sprintf("Skipped: SGD[Bernoulli]") FLAG_TEST_SGD_GAMMA ? include("test_runner_sgd_gamma.jl") : @info @sprintf("Skipped: SGD[Gamma]") FLAG_TEST_ALGO_ALM ? include("test_runner_algo_alm.jl") : @info @sprintf("Skipped: ALGO[ALM]") FLAG_TEST_CHAINED_ADMM ? include("test_runner_chained_admm.jl") : @info @sprintf("Skipped: ALGO[Chained ADMM]") #==============================================================================# # VISUAL SCRIPTS # #==============================================================================# FLAG_VISUAL_RANDOM_OBJECTS ? include("visual_random_objects.jl") : nothing if TEST_OPTION_PRINT_TIMER println() println(to) end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
6058
include("abstract_unittest_functions.jl") import MatrixCompletion.Utilities.FastEigen:ARPACK @info("Simulation: Vary Missing [Mixed, Small]") let Random.seed!(65536) ROW = 500 COL = 500 # for input_rank in union(1,collect(10:10:100)) # for input_sample in union(1, collect(5:5:99)) # try # @printf("small case: rank = %d | sample = %d%%\n", input_rank, input_sample) input_rank = 10 input_sample = 80 timer = TimerOutput() # RESULTS_DIR = GLOBAL_SIMULATION_RESULTS_DIR * # "mixed/small(500x500)(vary_missing)/" * # "rank" * string(input_rank) * "/" * # "sample" * string(input_sample) * "/" # LOG_FILE_NAME = "io.log" # DATA_FILE_NAME = "saved_variables.h5" # LOG_FILE_PATH = RESULTS_DIR * LOG_FILE_NAME # DATA_FILE_PATH = RESULTS_DIR * DATA_FILE_NAME # Base.Filesystem.mkpath(RESULTS_DIR) # io = open(LOG_FILE_PATH, "w") io = stdout truth_matrix = rand([(FixedRankMatrix(Distributions.Gaussian(10, 5), rank = input_rank), 500, 100), (FixedRankMatrix(Distributions.Bernoulli(0.5), rank = input_rank), 500, 100), (FixedRankMatrix(Distributions.Gamma(10, 0.5), rank = input_rank), 500, 100), (FixedRankMatrix(Distributions.Poisson(5), rank = input_rank), 500, 100), (FixedRankMatrix(Distributions.NegativeBinomial(6, 0.8), rank = input_rank), 500, 100)]) sample_model = provide(Sampler{BernoulliModel}(), rate = input_sample / 100) input_matrix = sample_model.draw(truth_matrix) manual_type_matrix = Array{Symbol}(undef, ROW, COL) manual_type_matrix[:, 1:100] .= :Gaussian manual_type_matrix[:, 101:200] .= :Bernoulli manual_type_matrix[:, 201:300] .= :Gamma manual_type_matrix[:, 301:400] .= :Poisson manual_type_matrix[:, 401:500] .= :NegativeBinomial user_input_estimators = Dict(:NegativeBinomial=> Dict(:r=>6, :p=>0.8)) @timeit timer "ARPACK" * string(input_sample) begin completed_matrix, type_tracker, tracker = complete(A = input_matrix, maxiter = 200, ρ = 0.3, use_autodiff = false, gd_iter = 3, debug_mode = false, user_input_estimators = user_input_estimators, project_rank = input_rank * 10 + 1, io = io, type_assignment = manual_type_matrix, eigen_solver = ARPACK()) end @timeit timer "KrylovKit" * string(input_sample) begin completed_matrix, type_tracker, tracker = complete(A = input_matrix, maxiter = 200, ρ = 0.3, use_autodiff = false, gd_iter = 3, debug_mode = false, user_input_estimators = user_input_estimators, project_rank = input_rank * 10 + 1, io = io, type_assignment = manual_type_matrix, eigen_solver = KrylovMethods()) end @timeit timer "FullEigen" * string(input_sample) begin completed_matrix, type_tracker, tracker = complete(A = input_matrix, maxiter = 200, ρ = 0.3, use_autodiff = false, gd_iter = 3, debug_mode = false, user_input_estimators = user_input_estimators, project_rank = nothing, io = io, type_assignment = manual_type_matrix) end predicted_matrix = predict(MatrixCompletionModel(), completed_matrix = completed_matrix, type_tracker = type_tracker, estimators = user_input_estimators) summary_object = summary(MatrixCompletionModel(), predicted_matrix = predicted_matrix, truth_matrix = truth_matrix, type_tracker = type_tracker, tracker = tracker) pickle(DATA_FILE_PATH, "missing_idx" => type_tracker[:Missing], "completed_matrix" => completed_matrix, "predicted_matrix" => predicted_matrix, "truth_matrix" => truth_matrix, "summary" => summary_object) print(io, JSON.json(summary_object, 4)) print(io, timer) s close(io) # end # catch # @printf("ERROR!!! rank = %d | sample = %d%%\n", input_rank, input_sample) # end end end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
3519
include("abstract_unittest_functions.jl") @info("Simulation: Vary Missing [Bernoulli, Small]") let Random.seed!(65536) ROW = 400 COL = 400 for input_rank in union(1, collect(25:25:200)) for input_sample in union(1, collect(5:5:99)) try @printf("small case: rank = %d | sample = %d%%\n", input_rank, input_sample) timer = TimerOutput() RESULTS_DIR = GLOBAL_SIMULATION_RESULTS_DIR * "bernoulli/small(400x400)(vary_missing)/" * "rank" * string(input_rank) * "/" * "sample" * string(input_sample) * "/" LOG_FILE_NAME = "io.log" DATA_FILE_NAME = "saved_variables.h5" LOG_FILE_PATH = RESULTS_DIR * LOG_FILE_NAME DATA_FILE_PATH = RESULTS_DIR * DATA_FILE_NAME Base.Filesystem.mkpath(RESULTS_DIR) io = open(LOG_FILE_PATH, "w") # io = stdout truth_matrix = rand([(FixedRankMatrix(Distributions.Bernoulli(0.5), rank = input_rank), ROW, COL)]) sample_model = provide(Sampler{BernoulliModel}(), rate = input_sample / 100) input_matrix = sample_model.draw(truth_matrix) manual_type_matrix = Array{Symbol}(undef, ROW, COL) manual_type_matrix .= :Bernoulli @timeit timer "Bernoulli(400x400)" * "| rank=" * string(input_rank) * "| sample=" * string(input_sample) begin completed_matrix, type_tracker, tracker = complete(A = input_matrix, maxiter = 200, ρ = 0.3, use_autodiff = false, gd_iter = 3, debug_mode = false, project_rank = nothing, type_assignment = manual_type_matrix) end predicted_matrix = predict(MatrixCompletionModel(), completed_matrix = completed_matrix, type_tracker = type_tracker) summary_object = summary(MatrixCompletionModel(), predicted_matrix = predicted_matrix, truth_matrix = truth_matrix, type_tracker = type_tracker, tracker = tracker) pickle(DATA_FILE_PATH, "missing_idx" => type_tracker[:Missing], "completed_matrix" => completed_matrix, "predicted_matrix" => predicted_matrix, "truth_matrix" => truth_matrix, "summary" => summary_object) print(io, JSON.json(summary_object, 4)) print(io, timer) close(io) catch nothing end end end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
2885
# include("abstract_unittest_functions.jl") @info("Simulation: Vary Rank [Bernoulli, Medium]") let Random.seed!(65536) ROW = 2000 COL = 2000 for input_rank in union(1, collect(10:10:300), 480, 490, 500) # for input_rank in collect(300:10:500) @printf("medium case: rank = %d\n", input_rank) dist = Bernoulli() timer = TimerOutput() RESULTS_DIR = GLOBAL_SIMULATION_RESULTS_DIR * "bernoulli/medium(2000x2000)(vary_rank)/" * "rank" * string(input_rank) * "/" LOG_FILE_NAME = "io.log" DATA_FILE_NAME = "saved_variables.h5" LOG_FILE_PATH = RESULTS_DIR * LOG_FILE_NAME DATA_FILE_PATH = RESULTS_DIR * DATA_FILE_NAME Base.Filesystem.mkpath(RESULTS_DIR) io = open(LOG_FILE_PATH, "w") truth_matrix = rand([(FixedRankMatrix(Distributions.Bernoulli(0.5), rank = input_rank), ROW, COL)]) sample_model = provide(Sampler{BernoulliModel}(), rate = 0.8) input_matrix = sample_model.draw(truth_matrix) manual_type_matrix = Array{Symbol}(undef, ROW, COL) manual_type_matrix .= :Bernoulli @timeit timer "Bernoulli(2000x2000)" * "| rank=" * string(input_rank) begin completed_matrix, type_tracker, tracker = complete(A = input_matrix, maxiter = 200, ρ = 0.3, use_autodiff = false, gd_iter = 3, debug_mode = false, project_rank = input_rank, io = io, type_assignment = manual_type_matrix) end predicted_matrix = predict(MatrixCompletionModel(), completed_matrix = completed_matrix, type_tracker = type_tracker) summary_object = summary(MatrixCompletionModel(), predicted_matrix = predicted_matrix, truth_matrix = truth_matrix, type_tracker = type_tracker, tracker = tracker) pickle(DATA_FILE_PATH, "missing_idx" => type_tracker[:Missing], "completed_matrix" => completed_matrix, "predicted_matrix" => predicted_matrix, "truth_matrix" => truth_matrix, "summary" => summary_object) # log_simulation_result(Bernoulli(), completed_matrix, truth_matrix, type_tracker,tracker, io = io) print(io, JSON.json(summary_object, 4)) print(io, timer) close(io) end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
2993
include("abstract_unittest_functions.jl") @info("Simulation: Vary Rank [Bernoulli, Small]") let Random.seed!(65536) ROW = 400 COL = 400 for input_rank in collect(1:400) try @printf("small case: rank = %d\n", input_rank) dist = Bernoulli() timer = TimerOutput() RESULTS_DIR = GLOBAL_SIMULATION_RESULTS_DIR * "bernoulli/p=0.9/small_400x400_vary_rank_sample80/" * "rank" * string(input_rank) * "/" LOG_FILE_NAME = "io.log" DATA_FILE_NAME = "saved_variables.h5" LOG_FILE_PATH = RESULTS_DIR * LOG_FILE_NAME DATA_FILE_PATH = RESULTS_DIR * DATA_FILE_NAME Base.Filesystem.mkpath(RESULTS_DIR) io = open(LOG_FILE_PATH, "w") truth_matrix = rand([(FixedRankMatrix(Distributions.Bernoulli(0.9), rank = input_rank), ROW, COL)]) sample_model = provide(Sampler{BernoulliModel}(), rate = 0.8) input_matrix = sample_model.draw(truth_matrix) manual_type_matrix = Array{Symbol}(undef, ROW, COL) manual_type_matrix .= :Bernoulli @timeit timer "Bernoulli(400x400)" * "| rank=" * string(input_rank) begin completed_matrix, type_tracker, tracker = complete(A = input_matrix, maxiter = 200, ρ = 0.3, use_autodiff = false, gd_iter = 3, debug_mode = false, project_rank = nothing, io = io, type_assignment = manual_type_matrix) end predicted_matrix = predict(MatrixCompletionModel(), completed_matrix = completed_matrix, type_tracker = type_tracker) summary_object = summary(MatrixCompletionModel(), predicted_matrix = predicted_matrix, truth_matrix = truth_matrix, type_tracker = type_tracker, tracker = tracker) pickle(DATA_FILE_PATH, "missing_idx" => type_tracker[:Missing], "completed_matrix" => completed_matrix, "predicted_matrix" => predicted_matrix, "truth_matrix" => truth_matrix, "summary" => summary_object) log_simulation_result(Bernoulli(), completed_matrix, truth_matrix, type_tracker,tracker, io = io) print(io, JSON.json(summary_object, 4)) print(io, timer) close(io) catch @printf("Error! small case: rank = %d\n", input_rank) end end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
3100
include("abstract_unittest_functions.jl") @info("Simulation: Vary Missing [Gamma, Small]") let Random.seed!(65536) ROW = 400 COL = 400 for input_rank in collect(25:25:400) for input_sample in union(collect(40:5:99)) # try @printf("small case: rank = %d | sample = %d%%\n", input_rank, input_sample) timer = TimerOutput() RESULTS_DIR = GLOBAL_SIMULATION_RESULTS_DIR * "gamma/small_400x400_vary_missing/" * "rank" * string(input_rank) * "/" * "sample" * string(input_sample) * "/" LOG_FILE_NAME = "io.log" DATA_FILE_NAME = "saved_variables.h5" LOG_FILE_PATH = RESULTS_DIR * LOG_FILE_NAME DATA_FILE_PATH = RESULTS_DIR * DATA_FILE_NAME Base.Filesystem.mkpath(RESULTS_DIR) io = open(LOG_FILE_PATH, "w") # io = stdout truth_matrix = rand([(FixedRankMatrix(Distributions.Gamma(10,0.5), rank = input_rank), ROW, COL)]) sample_model = provide(Sampler{BernoulliModel}(), rate = input_sample / 100) input_matrix = sample_model.draw(truth_matrix) manual_type_matrix = Array{Symbol}(undef, ROW, COL) manual_type_matrix .= :Gamma @timeit timer "Gamma(400x400)" * "| rank=" * string(input_rank) * "| sample=" * string(input_sample) begin completed_matrix, type_tracker, tracker = complete(A = input_matrix, maxiter = 200, ρ = 0.3, use_autodiff = false, gd_iter = 3, debug_mode = false, project_rank = nothing, io = io, type_assignment = manual_type_matrix) end predicted_matrix = predict(MatrixCompletionModel(), completed_matrix = completed_matrix, type_tracker = type_tracker) summary_object = summary(MatrixCompletionModel(), predicted_matrix = predicted_matrix, truth_matrix = truth_matrix, type_tracker = type_tracker, tracker = tracker) pickle(DATA_FILE_PATH, "missing_idx" => type_tracker[:Missing], "completed_matrix" => completed_matrix, "predicted_matrix" => predicted_matrix, "truth_matrix" => truth_matrix, "summary" => summary_object) print(io, JSON.json(summary_object, 4)) print(io, timer) close(io) # catch # @printf("ERROR!!!! rank = %d | sample = %d%%\n", input_rank, input_sample) # end end end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
2666
@info("Simulation: Vary Rank [Gamma, Medium]") let Random.seed!(65536) ROW = 2000 COL = 2000 for input_rank in union(1, collect(10:10:500)) @printf("medium case: rank = %d\n", input_rank) # dist = Gamma() timer = TimerOutput() RESULTS_DIR = GLOBAL_SIMULATION_RESULTS_DIR * "gamma/medium(2000x2000)(vary_rank)/" * "rank" * string(input_rank) * "/" LOG_FILE_NAME = "io.log" DATA_FILE_NAME = "saved_variables.h5" LOG_FILE_PATH = RESULTS_DIR * LOG_FILE_NAME DATA_FILE_PATH = RESULTS_DIR * DATA_FILE_NAME Base.Filesystem.mkpath(RESULTS_DIR) io = open(LOG_FILE_PATH, "w") truth_matrix = rand([(FixedRankMatrix(Distributions.Gamma(10, 0.5), rank = input_rank), ROW, COL)]) sample_model = provide(Sampler{BernoulliModel}(), rate = 0.8) input_matrix = sample_model.draw(truth_matrix) manual_type_matrix = Array{Symbol}(undef, ROW, COL) manual_type_matrix .= :Gamma @timeit timer "Gamma(2000x2000)" * "| rank=" * string(input_rank) begin completed_matrix, type_tracker, tracker = complete(A = input_matrix, maxiter = 200, ρ = 0.3, use_autodiff = false, gd_iter = 3, debug_mode = false, project_rank = input_rank, io = io, type_assignment = manual_type_matrix) end predicted_matrix = predict(MatrixCompletionModel(), completed_matrix = completed_matrix, type_tracker = type_tracker) summary_object = summary(MatrixCompletionModel(), predicted_matrix = predicted_matrix, truth_matrix = truth_matrix, type_tracker = type_tracker, tracker = tracker) pickle(DATA_FILE_PATH, "missing_idx" => type_tracker[:Missing], "completed_matrix" => completed_matrix, "predicted_matrix" => predicted_matrix, "truth_matrix" => truth_matrix, "summary" => summary_object) print(io, JSON.json(summary_object, 4)) print(io, timer) close(io) end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
2644
@info("Simulation: Vary Rank [Gamma, Small]") let Random.seed!(65536) ROW = 400 COL = 400 for input_rank in collect(2:400) @printf("small case: rank = %d\n", input_rank) # dist = Poisson() timer = TimerOutput() RESULTS_DIR = GLOBAL_SIMULATION_RESULTS_DIR * "gamma/small(400x400)(vary_rank)/" * "rank" * string(input_rank) * "/" LOG_FILE_NAME = "io.log" DATA_FILE_NAME = "saved_variables.h5" LOG_FILE_PATH = RESULTS_DIR * LOG_FILE_NAME DATA_FILE_PATH = RESULTS_DIR * DATA_FILE_NAME Base.Filesystem.mkpath(RESULTS_DIR) io = open(LOG_FILE_PATH, "w") truth_matrix = rand([(FixedRankMatrix(Distributions.Gamma(10, 0.5), rank = input_rank), ROW, COL)]) sample_model = provide(Sampler{BernoulliModel}(), rate = 0.8) input_matrix = sample_model.draw(truth_matrix) manual_type_matrix = Array{Symbol}(undef, ROW, COL) manual_type_matrix .= :Gamma @timeit timer "Gamma(400x400)" * "| rank=" * string(input_rank) begin completed_matrix, type_tracker, tracker = complete(A = input_matrix, maxiter = 200, ρ = 0.3, use_autodiff = false, gd_iter = 3, debug_mode = false, project_rank = nothing, io = io, type_assignment = manual_type_matrix) end predicted_matrix = predict(MatrixCompletionModel(), completed_matrix = completed_matrix, type_tracker = type_tracker) summary_object = summary(MatrixCompletionModel(), predicted_matrix = predicted_matrix, truth_matrix = truth_matrix, type_tracker = type_tracker, tracker = tracker) pickle(DATA_FILE_PATH, "missing_idx" => type_tracker[:Missing], "completed_matrix" => completed_matrix, "predicted_matrix" => predicted_matrix, "truth_matrix" => truth_matrix, "summary" => summary_object) print(io, JSON.json(summary_object, 4)) print(io, timer) close(io) end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
3126
include("abstract_unittest_functions.jl") @info("Simulation: Vary Missing [Gaussian, Small]") let Random.seed!(65536) ROW = 400 COL = 400 for input_rank in collect(25:25:400) for input_sample in union(collect(40:5:99)) # try @printf("small case: rank = %d | sample = %d%%\n", input_rank, input_sample) timer = TimerOutput() RESULTS_DIR = GLOBAL_SIMULATION_RESULTS_DIR * "gaussian/mu=0_sigma=1/small_400x400_vary_missing/" * "rank" * string(input_rank) * "/" * "sample" * string(input_sample) * "/" LOG_FILE_NAME = "io.log" DATA_FILE_NAME = "saved_variables.h5" LOG_FILE_PATH = RESULTS_DIR * LOG_FILE_NAME DATA_FILE_PATH = RESULTS_DIR * DATA_FILE_NAME Base.Filesystem.mkpath(RESULTS_DIR) io = open(LOG_FILE_PATH, "w") # io = stdout truth_matrix = rand([(FixedRankMatrix(Distributions.Gaussian(0, 1), rank = input_rank), ROW, COL)]) sample_model = provide(Sampler{BernoulliModel}(), rate = input_sample / 100) input_matrix = sample_model.draw(truth_matrix) manual_type_matrix = Array{Symbol}(undef, ROW, COL) manual_type_matrix .= :Gaussian @timeit timer "Gaussian(400x400)" * "| rank=" * string(input_rank) * "| sample=" * string(input_sample) begin completed_matrix, type_tracker, tracker = complete(A = input_matrix, maxiter = 200, ρ = 0.3, use_autodiff = false, gd_iter = 3, debug_mode = false, project_rank = nothing, io = io, type_assignment = manual_type_matrix) end predicted_matrix = predict(MatrixCompletionModel(), completed_matrix = completed_matrix, type_tracker = type_tracker) summary_object = summary(MatrixCompletionModel(), predicted_matrix = predicted_matrix, truth_matrix = truth_matrix, type_tracker = type_tracker, tracker = tracker) pickle(DATA_FILE_PATH, "missing_idx" => type_tracker[:Missing], "completed_matrix" => completed_matrix, "predicted_matrix" => predicted_matrix, "truth_matrix" => truth_matrix, "summary" => summary_object) print(io, JSON.json(summary_object, 4)) print(io, timer) close(io) # catch # @printf("ERROR!!!! rank = %d | sample = %d%%\n", input_rank, input_sample) # end end end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
4541
include("abstract_unittest_functions.jl") @testset "$(format("ADMM Algorithm: Small Input Simulation [Gaussian 400 x 400]"))" begin let Random.seed!(65536) ROW = 400 COL = 400 for input_rank in 1:400 input_rank = 100 @printf("small case: rank = %d\n", input_rank) dist = Gaussian() timer = TimerOutput() # RESULTS_DIR = GLOBAL_SIMULATION_RESULTS_DIR * "gaussian/small(400x400)(vary_rank)/" * "rank" * string(input_rank) * "/" # LOG_FILE_NAME = "io.log" # DATA_FILE_NAME = "saved_variables.h5" # LOG_FILE_PATH = RESULTS_DIR * LOG_FILE_NAME # DATA_FILE_PATH = RESULTS_DIR * DATA_FILE_NAME # Base.Filesystem.mkpath(RESULTS_DIR) # io = open(LOG_FILE_PATH, "w") io = stdout _truth_matrix = rand([(FixedRankMatrix(Distributions.Gaussian(10, 1), rank = input_rank), ROW, COL)]) truth_matrix = _truth_matrix .- 10 sample_model = provide(Sampler{BernoulliModel}(), rate = 0.8) input_matrix = sample_model.draw(truth_matrix) manual_type_matrix = Array{Symbol}(undef, ROW, COL) manual_type_matrix .= :Gaussian @timeit timer "Gaussian(400x400)" * "| rank=" * string(input_rank) begin completed_matrix, type_tracker, tracker = complete(A = input_matrix, maxiter = 200, ρ = 0.3, use_autodiff = false, gd_iter = 3, debug_mode = false, project_rank = nothing, io = io, type_assignment = manual_type_matrix) end predicted_matrix = predict(MatrixCompletionModel(), completed_matrix = completed_matrix, type_tracker = type_tracker) summary_object = summary(MatrixCompletionModel(), predicted_matrix = predicted_matrix .+ 10, truth_matrix = _truth_matrix, type_tracker = type_tracker, tracker = tracker) summary_object[:Gaussian] @timeit timer "Gaussian(400x400)" * "closed" * string(input_rank) begin completed_matrix, type_tracker, tracker = complete(A = input_matrix, maxiter = 200, ρ = 0.3, use_autodiff = false, gd_iter = 3, debug_mode = false, project_rank = nothing, io = io, type_assignment = manual_type_matrix, closed_form = true) end predicted_matrix = predict(MatrixCompletionModel(), completed_matrix = completed_matrix, type_tracker = type_tracker) summary_object = summary(MatrixCompletionModel(), predicted_matrix = predicted_matrix, truth_matrix = truth_matrix, type_tracker = type_tracker, tracker = tracker) summary_object[:Gaussian] pickle(DATA_FILE_PATH, "missing_idx" => type_tracker[:Missing], "completed_matrix" => completed_matrix, "predicted_matrix" => predicted_matrix, "truth_matrix" => truth_matrix, "summary" => summary_object) print(io, JSON.json(summary_object, 4)) print(io, timer) close(io) end end else @info("Already Completed Simualtion[Gaussian vary rank][SMALL]") end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
3139
include("abstract_unittest_functions.jl") @info("Simulation: Vary Missing [Gaussian, Medium]") let Random.seed!(65536) ROW = 2000 COL = 2000 for input_rank in union(200, 500) for input_sample in union(collect(50:5:99)) # try @printf("medium case: rank = %d | sample = %d%%\n", input_rank, input_sample) timer = TimerOutput() RESULTS_DIR = GLOBAL_SIMULATION_RESULTS_DIR * "gaussian/mu=0_sigma=1/medium_2000x2000_vary_missing/" * "rank" * string(input_rank) * "/" * "sample" * string(input_sample) * "/" LOG_FILE_NAME = "io.log" DATA_FILE_NAME = "saved_variables.h5" LOG_FILE_PATH = RESULTS_DIR * LOG_FILE_NAME DATA_FILE_PATH = RESULTS_DIR * DATA_FILE_NAME Base.Filesystem.mkpath(RESULTS_DIR) io = open(LOG_FILE_PATH, "w") # io = stdout truth_matrix = rand([(FixedRankMatrix(Distributions.Gaussian(0, 1), rank = input_rank), ROW, COL)]) sample_model = provide(Sampler{BernoulliModel}(), rate = input_sample / 100) input_matrix = sample_model.draw(truth_matrix) manual_type_matrix = Array{Symbol}(undef, ROW, COL) manual_type_matrix .= :Gaussian @timeit timer "Gaussian(2000x2000)" * "| rank=" * string(input_rank) * "| sample=" * string(input_sample) begin completed_matrix, type_tracker, tracker = complete(A = input_matrix, maxiter = 200, ρ = 0.3, use_autodiff = false, gd_iter = 3, debug_mode = false, project_rank = input_rank * 2, io = io, type_assignment = manual_type_matrix) end predicted_matrix = predict(MatrixCompletionModel(), completed_matrix = completed_matrix, type_tracker = type_tracker) summary_object = summary(MatrixCompletionModel(), predicted_matrix = predicted_matrix, truth_matrix = truth_matrix, type_tracker = type_tracker, tracker = tracker) pickle(DATA_FILE_PATH, "missing_idx" => type_tracker[:Missing], "completed_matrix" => completed_matrix, "predicted_matrix" => predicted_matrix, "truth_matrix" => truth_matrix, "summary" => summary_object) print(io, JSON.json(summary_object, 4)) print(io, timer) close(io) # catch # @printf("ERROR!!!! rank = %d | sample = %d%%\n", input_rank, input_sample) # end end end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
2721
include("abstract_unittest_functions.jl") @info("Gaussian(0,1) Medium") let Random.seed!(65536) ROW = 2000 COL = 2000 for input_rank in union(1, collect(10:10:500)) @printf("medium case: rank = %d\n", input_rank) dist = Gaussian() timer = TimerOutput() RESULTS_DIR = GLOBAL_SIMULATION_RESULTS_DIR * "gaussian/mu=0_sigma=1/medium_2000x2000_vary_rank_sample=80/" * "rank" * string(input_rank) * "/" LOG_FILE_NAME = "io.log" DATA_FILE_NAME = "saved_variables.h5" LOG_FILE_PATH = RESULTS_DIR * LOG_FILE_NAME DATA_FILE_PATH = RESULTS_DIR * DATA_FILE_NAME Base.Filesystem.mkpath(RESULTS_DIR) io = open(LOG_FILE_PATH, "w") truth_matrix = rand([(FixedRankMatrix(Distributions.Gaussian(0, 1), rank = input_rank), ROW, COL)]) sample_model = provide(Sampler{BernoulliModel}(), rate = 0.8) input_matrix = sample_model.draw(truth_matrix) manual_type_matrix = Array{Symbol}(undef, ROW, COL) manual_type_matrix .= :Gaussian @timeit timer "Gaussian(2000x2000)" * "| rank=" * string(input_rank) begin completed_matrix, type_tracker, tracker = complete(A = input_matrix, maxiter = 200, ρ = 0.3, use_autodiff = false, gd_iter = 3, debug_mode = false, project_rank = input_rank * 2, io = io, type_assignment = manual_type_matrix) end predicted_matrix = predict(MatrixCompletionModel(), completed_matrix = completed_matrix, type_tracker = type_tracker) summary_object = summary(MatrixCompletionModel(), predicted_matrix = predicted_matrix, truth_matrix = truth_matrix, type_tracker = type_tracker, tracker = tracker) pickle(DATA_FILE_PATH, "missing_idx" => type_tracker[:Missing], "completed_matrix" => completed_matrix, "predicted_matrix" => predicted_matrix, "truth_matrix" => truth_matrix, "summary" => summary_object) print(io, JSON.json(summary_object, 4)) print(io, timer) close(io) end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
2673
include("abstract_unittest_functions.jl") @info("Gaussian(0,1) Small") let Random.seed!(65536) ROW = 400 COL = 400 for input_rank in 1:400 @printf("small case: rank = %d\n", input_rank) dist = Gaussian() timer = TimerOutput() RESULTS_DIR = GLOBAL_SIMULATION_RESULTS_DIR * "gaussian/mu=0_sigma=1/small_400x400_vary_rank/" * "rank" * string(input_rank) * "/" LOG_FILE_NAME = "io.log" DATA_FILE_NAME = "saved_variables.h5" LOG_FILE_PATH = RESULTS_DIR * LOG_FILE_NAME DATA_FILE_PATH = RESULTS_DIR * DATA_FILE_NAME Base.Filesystem.mkpath(RESULTS_DIR) io = open(LOG_FILE_PATH, "w") truth_matrix = rand([(FixedRankMatrix(Distributions.Gaussian(0, 1), rank = input_rank), ROW, COL)]) sample_model = provide(Sampler{BernoulliModel}(), rate = 0.8) input_matrix = sample_model.draw(truth_matrix) manual_type_matrix = Array{Symbol}(undef, ROW, COL) manual_type_matrix .= :Gaussian @timeit timer "Gaussian(400x400)" * "| rank=" * string(input_rank) begin completed_matrix, type_tracker, tracker = complete(A = input_matrix, maxiter = 200, ρ = 0.3, use_autodiff = false, gd_iter = 3, debug_mode = false, project_rank = nothing, io = io, type_assignment = manual_type_matrix) end predicted_matrix = predict(MatrixCompletionModel(), completed_matrix = completed_matrix, type_tracker = type_tracker) summary_object = summary(MatrixCompletionModel(), predicted_matrix = predicted_matrix, truth_matrix = truth_matrix, type_tracker = type_tracker, tracker = tracker) pickle(DATA_FILE_PATH, "missing_idx" => type_tracker[:Missing], "completed_matrix" => completed_matrix, "predicted_matrix" => predicted_matrix, "truth_matrix" => truth_matrix, "summary" => summary_object) print(io, JSON.json(summary_object, 4)) print(io, timer) close(io) end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
4281
include("abstract_unittest_functions.jl") @info("Simulation: Vary Missing [Mixed, Medium]") let Random.seed!(65536) ROW = 2000 COL = 2000 # for input_rank in union(1,collect(10:10:100)) for input_rank in union(80) for input_sample in union(collect(50:5:99)) # try @printf("medium case: rank = %d | sample = %d%%\n", input_rank, input_sample) timer = TimerOutput() RESULTS_DIR = GLOBAL_SIMULATION_RESULTS_DIR * "mixed/medium(2000x2000)(vary_missing)_standardized/" * "rank" * string(input_rank) * "/" * "sample" * string(input_sample) * "/" LOG_FILE_NAME = "io.log" DATA_FILE_NAME = "saved_variables.h5" LOG_FILE_PATH = RESULTS_DIR * LOG_FILE_NAME DATA_FILE_PATH = RESULTS_DIR * DATA_FILE_NAME Base.Filesystem.mkpath(RESULTS_DIR) io = open(LOG_FILE_PATH, "w") truth_matrix = rand([(FixedRankMatrix(Distributions.Gaussian(0, 1), rank = input_rank), 2000, 400), (FixedRankMatrix(Distributions.Bernoulli(0.5), rank = input_rank), 2000, 400), (FixedRankMatrix(Distributions.Gamma(10, 0.5), rank = input_rank), 2000, 400), (FixedRankMatrix(Distributions.Poisson(5), rank = input_rank), 2000, 400), (FixedRankMatrix(Distributions.NegativeBinomial(6, 0.8), rank = input_rank), 2000, 400)]) sample_model = provide(Sampler{BernoulliModel}(), rate = input_sample / 100) input_matrix = sample_model.draw(truth_matrix) manual_type_matrix = Array{Symbol}(undef, ROW, COL) manual_type_matrix[:, 1:400] .= :Gaussian manual_type_matrix[:, 401:800] .= :Bernoulli manual_type_matrix[:, 801:1200] .= :Gamma manual_type_matrix[:, 1201:1600] .= :Poisson manual_type_matrix[:, 1601:2000] .= :NegativeBinomial user_input_estimators = Dict(:NegativeBinomial=> Dict(:r=>6, :p=>0.8)) @timeit timer "Mixed(2000x2000)" * "| rank=" * string(input_rank) * "| sample=" * string(input_sample) begin completed_matrix, type_tracker, tracker = complete(A = input_matrix, maxiter = 200, ρ = 0.3, use_autodiff = false, gd_iter = 3, debug_mode = false, user_input_estimators = user_input_estimators, project_rank = input_rank * 10 + 1, io = io, type_assignment = manual_type_matrix, closed_form_update = true) end predicted_matrix = predict(MatrixCompletionModel(), completed_matrix = completed_matrix, type_tracker = type_tracker, estimators = user_input_estimators) summary_object = summary(MatrixCompletionModel(), predicted_matrix = predicted_matrix, truth_matrix = truth_matrix, type_tracker = type_tracker, tracker = tracker) pickle(DATA_FILE_PATH, "missing_idx" => type_tracker[:Missing], "completed_matrix" => completed_matrix, "predicted_matrix" => predicted_matrix, "truth_matrix" => truth_matrix, "summary" => summary_object) print(io, JSON.json(summary_object, 4)) print(io, timer) close(io) # end # catch # @printf("ERROR!!! rank = %d | sample = %d%%\n", input_rank, input_sample) # end end end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
4137
include("abstract_unittest_functions.jl") @info("Simulation: Vary Missing [Mixed, Small]") let Random.seed!(65536) ROW = 500 COL = 500 for input_rank in union(1, collect(10:10:100)) for input_sample in union(collect(50:5:99)) try @printf("small case: rank = %d | sample = %d%%\n", input_rank, input_sample) timer = TimerOutput() RESULTS_DIR = GLOBAL_SIMULATION_RESULTS_DIR * "mixed/small_500x500_vary_missing_standarized_lanzcos/" * "rank" * string(input_rank) * "/" * "sample" * string(input_sample) * "/" LOG_FILE_NAME = "io.log" DATA_FILE_NAME = "saved_variables.h5" LOG_FILE_PATH = RESULTS_DIR * LOG_FILE_NAME DATA_FILE_PATH = RESULTS_DIR * DATA_FILE_NAME Base.Filesystem.mkpath(RESULTS_DIR) io = open(LOG_FILE_PATH, "w") truth_matrix = rand([(FixedRankMatrix(Distributions.Gaussian(0, 1), rank = input_rank), 500, 100), (FixedRankMatrix(Distributions.Bernoulli(0.5), rank = input_rank), 500, 100), (FixedRankMatrix(Distributions.Gamma(10, 0.5), rank = input_rank), 500, 100), (FixedRankMatrix(Distributions.Poisson(5), rank = input_rank), 500, 100), (FixedRankMatrix(Distributions.NegativeBinomial(6, 0.8), rank = input_rank), 500, 100)]) sample_model = provide(Sampler{BernoulliModel}(), rate = input_sample / 100) input_matrix = sample_model.draw(truth_matrix) manual_type_matrix = Array{Symbol}(undef, ROW, COL) manual_type_matrix[:, 1:100] .= :Gaussian manual_type_matrix[:, 101:200] .= :Bernoulli manual_type_matrix[:, 201:300] .= :Gamma manual_type_matrix[:, 301:400] .= :Poisson manual_type_matrix[:, 401:500] .= :NegativeBinomial user_input_estimators = Dict(:NegativeBinomial=> Dict(:r=>6, :p=>0.8)) @timeit timer "Mixed(500x500)" * "| rank=" * string(input_rank) * "| sample=" * string(input_sample) begin completed_matrix, type_tracker, tracker = complete(A = input_matrix, maxiter = 200, ρ = 0.3, use_autodiff = false, gd_iter = 3, debug_mode = false, user_input_estimators = user_input_estimators, project_rank = input_rank * 10, io = io, type_assignment = manual_type_matrix) end predicted_matrix = predict(MatrixCompletionModel(), completed_matrix = completed_matrix, type_tracker = type_tracker, estimators = user_input_estimators) summary_object = summary(MatrixCompletionModel(), predicted_matrix = predicted_matrix, truth_matrix = truth_matrix, type_tracker = type_tracker, tracker = tracker) pickle(DATA_FILE_PATH, "missing_idx" => type_tracker[:Missing], "completed_matrix" => completed_matrix, "predicted_matrix" => predicted_matrix, "truth_matrix" => truth_matrix, "summary" => summary_object) print(io, JSON.json(summary_object, 4)) print(io, timer) close(io) # end catch @printf("ERROR!!! rank = %d | sample = %d%%\n", input_rank, input_sample) end end end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
3710
include("abstract_unittest_functions.jl") @info("Simulation: Vary Rank [Mixed, Medium]") let Random.seed!(65536) ROW = 2000 COL = 2000 for input_rank in union(1, 10:10:50) @printf("medium case: rank = %d\n", input_rank) timer = TimerOutput() RESULTS_DIR = GLOBAL_SIMULATION_RESULTS_DIR * "mixed/medium(2000x2000)(vary_rank)/" * "rank" * string(input_rank) * "/" LOG_FILE_NAME = "io.log" DATA_FILE_NAME = "saved_variables.h5" LOG_FILE_PATH = RESULTS_DIR * LOG_FILE_NAME DATA_FILE_PATH = RESULTS_DIR * DATA_FILE_NAME Base.Filesystem.mkpath(RESULTS_DIR) io = open(LOG_FILE_PATH, "w") truth_matrix = rand([(FixedRankMatrix(Distributions.Gaussian(0, 1), rank = input_rank), 2000, 400), (FixedRankMatrix(Distributions.Bernoulli(0.5), rank = input_rank), 2000, 400), (FixedRankMatrix(Distributions.Gamma(10, 0.5), rank = input_rank), 2000, 400), (FixedRankMatrix(Distributions.Poisson(5), rank = input_rank), 2000, 400), (FixedRankMatrix(Distributions.NegativeBinomial(6, 0.8), rank = input_rank), 2000, 400)]) sample_model = provide(Sampler{BernoulliModel}(), rate = 0.8) input_matrix = sample_model.draw(truth_matrix) manual_type_matrix = Array{Symbol}(undef, ROW, COL) manual_type_matrix[:, 1:400] .= :Gaussian manual_type_matrix[:, 401:800] .= :Bernoulli manual_type_matrix[:, 801:1200] .= :Gamma manual_type_matrix[:, 1201:1600] .= :Poisson manual_type_matrix[:, 1601:2000] .= :NegativeBinomial user_input_estimators = Dict(:NegativeBinomial=> Dict(:r=>6, :p=>0.8)) @timeit timer "Mixed(2000x2000)" * "| rank=" * string(input_rank) begin completed_matrix, type_tracker, tracker = complete(A = input_matrix, maxiter = 200, ρ = 0.3, use_autodiff = false, gd_iter = 3, debug_mode = false, user_input_estimators = user_input_estimators, project_rank = input_rank * 10 + 1, io = io, type_assignment = manual_type_matrix) end predicted_matrix = predict(MatrixCompletionModel(), completed_matrix = completed_matrix, type_tracker = type_tracker, estimators = user_input_estimators) summary_object = summary(MatrixCompletionModel(), predicted_matrix = predicted_matrix, truth_matrix = truth_matrix, type_tracker = type_tracker, tracker = tracker) pickle(DATA_FILE_PATH, "missing_idx" => type_tracker[:Missing], "completed_matrix" => completed_matrix, "predicted_matrix" => predicted_matrix, "truth_matrix" => truth_matrix, "summary" => summary_object) print(io, JSON.json(summary_object, 4)) print(io, timer) close(io) end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
3692
include("abstract_unittest_functions.jl") @info("Simulation: Vary Rank [Mixed, Small]") let Random.seed!(65536) ROW = 500 COL = 500 for input_rank in 1:50 @printf("small case: rank = %d\n", input_rank) timer = TimerOutput() RESULTS_DIR = GLOBAL_SIMULATION_RESULTS_DIR * "mixed/small_500x500_vary_rank_sample80_lanzcos/" * "rank" * string(input_rank) * "/" LOG_FILE_NAME = "io.log" DATA_FILE_NAME = "saved_variables.h5" LOG_FILE_PATH = RESULTS_DIR * LOG_FILE_NAME DATA_FILE_PATH = RESULTS_DIR * DATA_FILE_NAME Base.Filesystem.mkpath(RESULTS_DIR) io = open(LOG_FILE_PATH, "w") truth_matrix = rand([(FixedRankMatrix(Distributions.Gaussian(0, 1), rank = input_rank), 500, 100), (FixedRankMatrix(Distributions.Bernoulli(0.5), rank = input_rank), 500, 100), (FixedRankMatrix(Distributions.Gamma(10, 0.5), rank = input_rank), 500, 100), (FixedRankMatrix(Distributions.Poisson(5), rank = input_rank), 500, 100), (FixedRankMatrix(Distributions.NegativeBinomial(6, 0.8), rank = input_rank), 500, 100)]) sample_model = provide(Sampler{BernoulliModel}(), rate = 0.8) input_matrix = sample_model.draw(truth_matrix) manual_type_matrix = Array{Symbol}(undef, ROW, COL) manual_type_matrix[:, 1:100] .= :Gaussian manual_type_matrix[:, 101:200] .= :Bernoulli manual_type_matrix[:, 201:300] .= :Gamma manual_type_matrix[:, 301:400] .= :Poisson manual_type_matrix[:, 401:500] .= :NegativeBinomial user_input_estimators = Dict(:NegativeBinomial=> Dict(:r=>6, :p=>0.8)) @timeit timer "Mixed(500x500)" * "| rank=" * string(input_rank) begin completed_matrix, type_tracker, tracker = complete(A = input_matrix, maxiter = 200, ρ = 0.3, use_autodiff = false, gd_iter = 3, debug_mode = false, user_input_estimators = user_input_estimators, project_rank = input_rank * 10 + 1, io = io, type_assignment = manual_type_matrix) end predicted_matrix = predict(MatrixCompletionModel(), completed_matrix = completed_matrix, type_tracker = type_tracker, estimators = user_input_estimators) summary_object = summary(MatrixCompletionModel(), predicted_matrix = predicted_matrix, truth_matrix = truth_matrix, type_tracker = type_tracker, tracker = tracker) pickle(DATA_FILE_PATH, "missing_idx" => type_tracker[:Missing], "completed_matrix" => completed_matrix, "predicted_matrix" => predicted_matrix, "truth_matrix" => truth_matrix, "summary" => summary_object) print(io, JSON.json(summary_object, 4)) print(io, timer) close(io) end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
3436
include("abstract_unittest_functions.jl") @info("Simulation: Vary Missing [NegBin, Small]") let Random.seed!(65536) ROW = 400 COL = 400 for input_rank in collect(25:25:400) for input_sample in union(collect(40:5:99)) # try @printf("small case: rank = %d | sample = %d%%\n", input_rank, input_sample) timer = TimerOutput() RESULTS_DIR = GLOBAL_SIMULATION_RESULTS_DIR * "negbin/small_400x400_vary_missing/" * "rank" * string(input_rank) * "/" * "sample" * string(input_sample) * "/" LOG_FILE_NAME = "io.log" DATA_FILE_NAME = "saved_variables.h5" LOG_FILE_PATH = RESULTS_DIR * LOG_FILE_NAME DATA_FILE_PATH = RESULTS_DIR * DATA_FILE_NAME Base.Filesystem.mkpath(RESULTS_DIR) io = open(LOG_FILE_PATH, "w") # io = stdout truth_matrix = rand([(FixedRankMatrix(Distributions.NegativeBinomial(6,0.8), rank = input_rank), ROW, COL)]) sample_model = provide(Sampler{BernoulliModel}(), rate = input_sample / 100) input_matrix = sample_model.draw(truth_matrix) manual_type_matrix = Array{Symbol}(undef, ROW, COL) manual_type_matrix .= :NegativeBinomial user_input_estimators = Dict(:NegativeBinomial=> Dict(:r=>6, :p=>0.8)) @timeit timer "NegBin(400x400)" * "| rank=" * string(input_rank) * "| sample=" * string(input_sample) begin completed_matrix, type_tracker, tracker = complete(A = input_matrix, maxiter = 200, ρ = 0.3, use_autodiff = false, gd_iter = 3, debug_mode = false, project_rank = nothing, io = io, user_input_estimators = user_input_estimators, type_assignment = manual_type_matrix) end predicted_matrix = predict(MatrixCompletionModel(), completed_matrix = completed_matrix, type_tracker = type_tracker, estimators = user_input_estimators) summary_object = summary(MatrixCompletionModel(), predicted_matrix = predicted_matrix, truth_matrix = truth_matrix, type_tracker = type_tracker, tracker = tracker) pickle(DATA_FILE_PATH, "missing_idx" => type_tracker[:Missing], "completed_matrix" => completed_matrix, "predicted_matrix" => predicted_matrix, "truth_matrix" => truth_matrix, "summary" => summary_object) print(io, JSON.json(summary_object, 4)) print(io, timer) close(io) # catch # @printf("ERROR!!!! rank = %d | sample = %d%%\n", input_rank, input_sample) # end end end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
3137
@info("Simulation: Vary Rank [NegativeBinomial, Medium]") let Random.seed!(65536) ROW = 2000 COL = 2000 # for input_rank in collect(1:400) for input_rank in union(1, collect(10:10:500)) @printf("medium case: rank = %d\n", input_rank) timer = TimerOutput() RESULTS_DIR = GLOBAL_SIMULATION_RESULTS_DIR * "negbin/medium(2000x2000)(vary_rank)/" * "rank" * string(input_rank) * "/" LOG_FILE_NAME = "io.log" DATA_FILE_NAME = "saved_variables.h5" LOG_FILE_PATH = RESULTS_DIR * LOG_FILE_NAME DATA_FILE_PATH = RESULTS_DIR * DATA_FILE_NAME Base.Filesystem.mkpath(RESULTS_DIR) io = open(LOG_FILE_PATH, "w") truth_matrix = rand([(FixedRankMatrix(Distributions.NegativeBinomial(6, 0.5), rank = input_rank), ROW, COL)]) sample_model = provide(Sampler{BernoulliModel}(), rate = 0.8) input_matrix = sample_model.draw(truth_matrix) manual_type_matrix = Array{Symbol}(undef, ROW, COL) manual_type_matrix .= :NegativeBinomial user_input_estimators = Dict(:NegativeBinomial=> Dict(:r=>6, :p=>0.8)) @timeit timer "Bernoulli(400x400)" * "| rank=" * string(input_rank) begin completed_matrix, type_tracker, tracker = complete(A = input_matrix, maxiter = 200, ρ = 0.3, use_autodiff = false, gd_iter = 3, debug_mode = false, user_input_estimators = user_input_estimators, project_rank = input_rank, io = io, type_assignment = manual_type_matrix) end predicted_matrix = predict(MatrixCompletionModel(), completed_matrix = completed_matrix, type_tracker = type_tracker, estimators = user_input_estimators) summary_object = summary(MatrixCompletionModel(), predicted_matrix = predicted_matrix, truth_matrix = truth_matrix, type_tracker = type_tracker, tracker = tracker) pickle(DATA_FILE_PATH, "missing_idx" => type_tracker[:Missing], "completed_matrix" => completed_matrix, "predicted_matrix" => predicted_matrix, "truth_matrix" => truth_matrix, "summary" => summary_object) # log_simulation_result(Bernoulli(), completed_matrix, truth_matrix, type_tracker,tracker, io = io) print(io, JSON.json(summary_object, 4)) print(io, timer) close(io) end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
3153
include("abstract_unittest_functions.jl") @info("Simulation: Vary Rank [NegativeBinomial, Small]") let Random.seed!(65536) ROW = 400 COL = 400 for input_rank in collect(172:400) @printf("small case: rank = %d\n", input_rank) # dist = Bernoulli() timer = TimerOutput() RESULTS_DIR = GLOBAL_SIMULATION_RESULTS_DIR * "negbin/small(400x400)(vary_rank)/" * "rank" * string(input_rank) * "/" LOG_FILE_NAME = "io.log" DATA_FILE_NAME = "saved_variables.h5" LOG_FILE_PATH = RESULTS_DIR * LOG_FILE_NAME DATA_FILE_PATH = RESULTS_DIR * DATA_FILE_NAME Base.Filesystem.mkpath(RESULTS_DIR) io = open(LOG_FILE_PATH, "w") truth_matrix = rand([(FixedRankMatrix(Distributions.NegativeBinomial(6, 0.5), rank = input_rank), ROW, COL)]) sample_model = provide(Sampler{BernoulliModel}(), rate = 0.8) input_matrix = sample_model.draw(truth_matrix) manual_type_matrix = Array{Symbol}(undef, ROW, COL) manual_type_matrix .= :NegativeBinomial user_input_estimators = Dict(:NegativeBinomial=> Dict(:r=>6, :p=>0.8)) @timeit timer "NegativeBinomial(400x400)" * "| rank=" * string(input_rank) begin completed_matrix, type_tracker, tracker = complete(A = input_matrix, maxiter = 200, ρ = 0.3, use_autodiff = false, gd_iter = 3, debug_mode = false, user_input_estimators = user_input_estimators, project_rank = nothing, io = io, type_assignment = manual_type_matrix) end predicted_matrix = predict(MatrixCompletionModel(), completed_matrix = completed_matrix, type_tracker = type_tracker, estimators = user_input_estimators) summary_object = summary(MatrixCompletionModel(), predicted_matrix = predicted_matrix, truth_matrix = truth_matrix, type_tracker = type_tracker, tracker = tracker) pickle(DATA_FILE_PATH, "missing_idx" => type_tracker[:Missing], "completed_matrix" => completed_matrix, "predicted_matrix" => predicted_matrix, "truth_matrix" => truth_matrix, "summary" => summary_object) # log_simulation_result(Bernoulli(), completed_matrix, truth_matrix, type_tracker,tracker, io = io) print(io, JSON.json(summary_object, 4)) print(io, timer) close(io) end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
3123
include("abstract_unittest_functions.jl") @info("Simulation: Vary Missing [Poisson, Small]") let Random.seed!(65536) ROW = 400 COL = 400 for input_rank in union(collect(25:25:400)) for input_sample in union(collect(5:5:99)) try @printf("small case: rank = %d | sample = %d%%\n", input_rank, input_sample) timer = TimerOutput() RESULTS_DIR = GLOBAL_SIMULATION_RESULTS_DIR * "poisson/small(400x400)(vary_missing)/" * "rank" * string(input_rank) * "/" * "sample" * string(input_sample) * "/" LOG_FILE_NAME = "io.log" DATA_FILE_NAME = "saved_variables.h5" LOG_FILE_PATH = RESULTS_DIR * LOG_FILE_NAME DATA_FILE_PATH = RESULTS_DIR * DATA_FILE_NAME Base.Filesystem.mkpath(RESULTS_DIR) io = open(LOG_FILE_PATH, "w") # io = stdout truth_matrix = rand([(FixedRankMatrix(Distributions.Poisson(5), rank = input_rank), ROW, COL)]) sample_model = provide(Sampler{BernoulliModel}(), rate = input_sample / 100) input_matrix = sample_model.draw(truth_matrix) manual_type_matrix = Array{Symbol}(undef, ROW, COL) manual_type_matrix .= :Poisson @timeit timer "Poisson(400x400)" * "| rank=" * string(input_rank) * "| sample=" * string(input_sample) begin completed_matrix, type_tracker, tracker = complete(A = input_matrix, maxiter = 200, ρ = 0.3, use_autodiff = false, gd_iter = 3, debug_mode = false, project_rank = nothing, io = io, type_assignment = manual_type_matrix) end predicted_matrix = predict(MatrixCompletionModel(), completed_matrix = completed_matrix, type_tracker = type_tracker) summary_object = summary(MatrixCompletionModel(), predicted_matrix = predicted_matrix, truth_matrix = truth_matrix, type_tracker = type_tracker, tracker = tracker) pickle(DATA_FILE_PATH, "missing_idx" => type_tracker[:Missing], "completed_matrix" => completed_matrix, "predicted_matrix" => predicted_matrix, "truth_matrix" => truth_matrix, "summary" => summary_object) print(io, JSON.json(summary_object, 4)) print(io, timer) close(io) catch nothing end end end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
3129
include("abstract_unittest_functions.jl") @info("Simulation: Vary Missing [Poisson, Medium]") let Random.seed!(65536) ROW = 2000 COL = 2000 for input_rank in union(40, 100) for input_sample in union(collect(50:5:99)) try @printf("medium case: rank = %d | sample = %d%%\n", input_rank, input_sample) timer = TimerOutput() RESULTS_DIR = GLOBAL_SIMULATION_RESULTS_DIR * "poisson/medium_2000x2000__vary_missing/" * "rank" * string(input_rank) * "/" * "sample" * string(input_sample) * "/" LOG_FILE_NAME = "io.log" DATA_FILE_NAME = "saved_variables.h5" LOG_FILE_PATH = RESULTS_DIR * LOG_FILE_NAME DATA_FILE_PATH = RESULTS_DIR * DATA_FILE_NAME Base.Filesystem.mkpath(RESULTS_DIR) io = open(LOG_FILE_PATH, "w") # io = stdout truth_matrix = rand([(FixedRankMatrix(Distributions.Poisson(5), rank = input_rank), ROW, COL)]) sample_model = provide(Sampler{BernoulliModel}(), rate = input_sample / 100) input_matrix = sample_model.draw(truth_matrix) manual_type_matrix = Array{Symbol}(undef, ROW, COL) manual_type_matrix .= :Poisson @timeit timer "Poisson(2000x2000)" * "| rank=" * string(input_rank) * "| sample=" * string(input_sample) begin completed_matrix, type_tracker, tracker = complete(A = input_matrix, maxiter = 200, ρ = 0.3, use_autodiff = false, gd_iter = 3, debug_mode = false, project_rank = input_rank * 2, io = io, type_assignment = manual_type_matrix) end predicted_matrix = predict(MatrixCompletionModel(), completed_matrix = completed_matrix, type_tracker = type_tracker) summary_object = summary(MatrixCompletionModel(), predicted_matrix = predicted_matrix, truth_matrix = truth_matrix, type_tracker = type_tracker, tracker = tracker) pickle(DATA_FILE_PATH, "missing_idx" => type_tracker[:Missing], "completed_matrix" => completed_matrix, "predicted_matrix" => predicted_matrix, "truth_matrix" => truth_matrix, "summary" => summary_object) print(io, JSON.json(summary_object, 4)) print(io, timer) close(io) catch nothing end end end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
2670
@info("Simulation: Vary Rank [Poisson, Medium]") let Random.seed!(65536) ROW = 2000 COL = 2000 for input_rank in union(1, collect(10:10:500)) @printf("medium case: rank = %d\n", input_rank) dist = Poisson() timer = TimerOutput() RESULTS_DIR = GLOBAL_SIMULATION_RESULTS_DIR * "poisson/medium(2000x2000)(vary_rank)/" * "rank" * string(input_rank) * "/" LOG_FILE_NAME = "io.log" DATA_FILE_NAME = "saved_variables.h5" LOG_FILE_PATH = RESULTS_DIR * LOG_FILE_NAME DATA_FILE_PATH = RESULTS_DIR * DATA_FILE_NAME Base.Filesystem.mkpath(RESULTS_DIR) io = open(LOG_FILE_PATH, "w") truth_matrix = rand([(FixedRankMatrix(Distributions.Poisson(5), rank = input_rank), ROW, COL)]) sample_model = provide(Sampler{BernoulliModel}(), rate = 0.8) input_matrix = sample_model.draw(truth_matrix) manual_type_matrix = Array{Symbol}(undef, ROW, COL) manual_type_matrix .= :Poisson @timeit timer "Poisson(2000x2000)" * "| rank=" * string(input_rank) begin completed_matrix, type_tracker, tracker = complete(A = input_matrix, maxiter = 200, ρ = 0.3, use_autodiff = false, gd_iter = 3, debug_mode = false, project_rank = input_rank, io = io, type_assignment = manual_type_matrix) end predicted_matrix = predict(MatrixCompletionModel(), completed_matrix = completed_matrix, type_tracker = type_tracker) summary_object = summary(MatrixCompletionModel(), predicted_matrix = predicted_matrix, truth_matrix = truth_matrix, type_tracker = type_tracker, tracker = tracker) pickle(DATA_FILE_PATH, "missing_idx" => type_tracker[:Missing], "completed_matrix" => completed_matrix, "predicted_matrix" => predicted_matrix, "truth_matrix" => truth_matrix, "summary" => summary_object) print(io, JSON.json(summary_object, 4)) print(io, timer) close(io) end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
2666
@info("Simulation: Vary Rank [Poisson, Small]") let Random.seed!(65536) ROW = 2000 COL = 2000 for input_rank in union(1, collect(10:10:500)) @printf("medium case: rank = %d\n", input_rank) dist = Poisson() timer = TimerOutput() RESULTS_DIR = GLOBAL_SIMULATION_RESULTS_DIR * "poisson/medium(400x400)(vary_rank)/" * "rank" * string(input_rank) * "/" LOG_FILE_NAME = "io.log" DATA_FILE_NAME = "saved_variables.h5" LOG_FILE_PATH = RESULTS_DIR * LOG_FILE_NAME DATA_FILE_PATH = RESULTS_DIR * DATA_FILE_NAME Base.Filesystem.mkpath(RESULTS_DIR) io = open(LOG_FILE_PATH, "w") truth_matrix = rand([(FixedRankMatrix(Distributions.Poisson(5), rank = input_rank), ROW, COL)]) sample_model = provide(Sampler{BernoulliModel}(), rate = 0.8) input_matrix = sample_model.draw(truth_:matrix) manual_type_matrix = Array{Symbol}(undef, ROW, COL) manual_type_matrix .= :Poisson @timeit timer "Poisson(2000x2000)" * "| rank=" * string(input_rank) begin completed_matrix, type_tracker, tracker = complete(A = input_matrix, maxiter = 200, ρ = 0.3, use_autodiff = false, gd_iter = 3, debug_mode = false, project_rank = nothing, io = io, type_assignment = manual_type_matrix) end predicted_matrix = predict(MatrixCompletionModel(), completed_matrix = completed_matrix, type_tracker = type_tracker) summary_object = summary(MatrixCompletionModel(), predicted_matrix = predicted_matrix, truth_matrix = truth_matrix, type_tracker = type_tracker, tracker = tracker) pickle(DATA_FILE_PATH, "missing_idx" => type_tracker[:Missing], "completed_matrix" => completed_matrix, "predicted_matrix" => predicted_matrix, "truth_matrix" => truth_matrix, "summary" => summary_object) print(io, JSON.json(summary_object, 4)) print(io, timer) close(io) end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
2796
include("abstract_unittest_functions.jl") @info("Simulation: Vary Rank [Poisson, Small]") let Random.seed!(65536) ROW = 400 COL = 400 for input_rank in collect(1:400) @printf("small case: rank = %d\n", input_rank) input_rank = 100 dist = Poisson() timer = TimerOutput() # RESULTS_DIR = GLOBAL_SIMULATION_RESULTS_DIR * "poisson/small(400x400)(vary_rank)/" * "rank" * string(input_rank) * "/" # LOG_FILE_NAME = "io.log" # DATA_FILE_NAME = "saved_variables.h5" # LOG_FILE_PATH = RESULTS_DIR * LOG_FILE_NAME # DATA_FILE_PATH = RESULTS_DIR * DATA_FILE_NAME # Base.Filesystem.mkpath(RESULTS_DIR) # io = open(LOG_FILE_PATH, "w") io = Base.stdout truth_matrix = rand([(FixedRankMatrix(Distributions.Poisson(3), rank = input_rank), ROW, COL)]) sample_model = provide(Sampler{BernoulliModel}(), rate = 0.8) input_matrix = sample_model.draw(truth_matrix) manual_type_matrix = Array{Symbol}(undef, ROW, COL) manual_type_matrix .= :Poisson @timeit timer "Poisson(400x400)" * "| rank=" * string(input_rank) begin completed_matrix, type_tracker, tracker = complete(A = input_matrix, maxiter = 200, ρ = 0.2, use_autodiff = false, gd_iter = 3, debug_mode = false, project_rank = nothing, io = io, type_assignment = manual_type_matrix) end predicted_matrix = predict(MatrixCompletionModel(), completed_matrix = completed_matrix, type_tracker = type_tracker) summary_object = summary(MatrixCompletionModel(), predicted_matrix = predicted_matrix, truth_matrix = truth_matrix, type_tracker = type_tracker, tracker = tracker) # summary_object[:Poisson][:MissingOnly] pickle(DATA_FILE_PATH, "missing_idx" => type_tracker[:Missing], "completed_matrix" => completed_matrix, "predicted_matrix" => predicted_matrix, "truth_matrix" => truth_matrix, "summary" => summary_object) print(io, JSON.json(summary_object, 4)) print(io, timer) close(io) end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
8203
const FLAG_SIMULATION_BERNOULLI_VARY_RANK_SMALL = false const FLAG_SIMULATION_BERNOULLI_VARY_RANK_MEDIUM = true const FLAG_SIMULATION_BERNOULLI_VARY_RANK_LARGE = false const FLAG_SIMULATION_BERNOULLI_VARY_MISSING_PERCENTAGE_SMALL = false const FLAG_SIMULATION_BERNOULLI_VARY_MISSING_PERCENTAGE_MEDIUM = false const FLAG_SIMULATION_BERNOULLI_VARY_MISSING_PERCENTAGE_LARGE = false FLAG_SIMULATION_BERNOULLI_VARY_RANK_SMALL ? include("simulation_bernoulli_vary_rank_small.jl") : nothing FLAG_SIMULATION_BERNOULLI_VARY_RANK_MEDIUM ? include("simulation_bernoulli_vary_rank_medium.jl") : nothing FLAG_SIMULATION_BERNOULLI_VARY_RANK_LARGE ? include("simulation_bernoulli_vary_rank_large.jl") : nothing # @testset "$(format("ADMM Algorithm: Small Input Simulation [Bernoulli 400 x 400]"))" begin # if SIMULATION_STATUS_BERNOULLI_VARY_RANK_SMALL == false # let # Random.seed!(65536) # ROW = 400 # COL = 400 # for input_rank in 1:2:400 # @printf("small case: rank = %d\n", input_rank) # dist = Bernoulli() # timer = TimerOutput() # Base.Filesystem.mkpath("./test_result/bernoulli/small(400x400)") # io = open("./test_result/bernoulli/small(400x400)/rank"*string(input_rank)*".log", "w") # truth_matrix = rand([(FixedRankMatrix(Distributions.Bernoulli(0.5), rank = input_rank), ROW, COL)]) # sample_model = provide(Sampler{BernoulliModel}(), rate = 0.8) # input_matrix = sample_model.draw(truth_matrix) # manual_type_matrix = Array{Symbol}(undef, ROW, COL) # manual_type_matrix .= :Bernoulli # @timeit timer "Bernoulli(400x400)" * "| rank="*string(input_rank) begin # completed_matrix, type_tracker, tracker = complete(A = input_matrix, # maxiter = 200, # ρ = 0.3, # use_autodiff = false, # gd_iter = 3, # debug_mode = false, # project_rank = nothing, # io = io, # type_assignment = manual_type_matrix) # end # log_simulation_result(Bernoulli(), completed_matrix, truth_matrix, type_tracker,tracker, io = io) # show(io, MIME("text/plain"), timer) # end # end # end # end # @testset "$(format("ADMM Algorithm: Medium Input Simulation [Bernoulli 2000 x 2000]"))" begin # if SIMULATION_STATUS_BERNOULLI_VARY_RANK_MEDIUM == false # let # Random.seed!(65536) # ROW = 2000 # COL = 2000 # # for input_rank in union(1, collect(10:10:500)) # for input_rank in collect(300:10:500) # @printf("medium case: rank = %d\n", input_rank) # dist = Bernoulli() # timer = TimerOutput() # RESULTS_DIR = GLOBAL_SIMULATION_RESULTS_DIR * "bernoulli/medium(2000x2000)(vary_rank)/" * "rank" * string(input_rank) * "/" # LOG_FILE_NAME = "io.log" # DATA_FILE_NAME = "saved_variables.h5" # LOG_FILE_PATH = RESULTS_DIR * LOG_FILE_NAME # DATA_FILE_PATH = RESULTS_DIR * DATA_FILE_NAME # Base.Filesystem.mkpath(RESULTS_DIR) # io = open(LOG_FILE_PATH, "w") # truth_matrix = rand([(FixedRankMatrix(Distributions.Bernoulli(0.5), rank = input_rank), ROW, COL)]) # sample_model = provide(Sampler{BernoulliModel}(), rate = 0.8) # input_matrix = sample_model.draw(truth_matrix) # manual_type_matrix = Array{Symbol}(undef, ROW, COL) # manual_type_matrix .= :Bernoulli # @timeit timer "Bernoulli(2000x2000)" * "| rank=" * string(input_rank) begin # completed_matrix, type_tracker, tracker = complete(A = input_matrix, # maxiter = 200, # ρ = 0.3, # use_autodiff = false, # gd_iter = 3, # debug_mode = false, # project_rank = input_rank, # io = io, # type_assignment = manual_type_matrix) # end # predicted_matrix = predict(MatrixCompletionModel(), # completed_matrix = completed_matrix, # type_tracker = type_tracker) # summary_object = summary(MatrixCompletionModel(), # predicted_matrix = predicted_matrix, # truth_matrix = truth_matrix, # type_tracker = type_tracker, # tracker = tracker) # pickle(DATA_FILE_PATH, # "missing_idx" => type_tracker[:Missing], # "completed_matrix" => completed_matrix, # "predicted_matrix" => predicted_matrix, # "truth_matrix" => truth_matrix, # "summary" => summary_object) # log_simulation_result(Bernoulli(), completed_matrix, truth_matrix, type_tracker,tracker, io = io) # print(io, JSON.json(summary_object, 4)) # print(io, timer) # close(io) # end # end # else # @info("Already Completed Simualtion[Bernoulli vary rank][MEDIUM]") # end # end # @testset "$(format("ADMM Algorithm: Medium Input Simulation [Bernoulli 2000 x 2000]"))" begin # if SIMULATION_STATUS_BERNOULLI_VARY_RANK_MEDIUM == false # let # Random.seed!(65536) # ROW = 100 # COL = 100 # for input_rank in union(1, collect(10:10:500)) # @printf("medium case: rank = %d\n", input_rank) # dist = Bernoulli() # timer = TimerOutput() # # Base.Filesystem.mkpath("./test_result/bernoulli/medium(2000x2000)") # # io = open("./test_result/bernoulli/medium(2000x2000)/rank"*string(input_rank)*".log", "w") # io = Base.stdout # truth_matrix = rand([(FixedRankMatrix(Distributions.Bernoulli(0.5), rank = input_rank), ROW, COL)]) # sample_model = provide(Sampler{BernoulliModel}(), rate = 0.8) # input_matrix = sample_model.draw(truth_matrix) # manual_type_matrix = Array{Symbol}(undef, ROW, COL) # manual_type_matrix .= :Bernoulli # @timeit timer "Bernoulli(2000x2000)" * "| rank="*string(input_rank) begin # completed_matrix, type_tracker, tracker = complete(A = input_matrix, # maxiter = 200, # ρ = 0.3, # use_autodiff = false, # gd_iter = 3, # debug_mode = false, # project_rank = input_rank, # io = io, # type_assignment = manual_type_matrix) # end # log_simulation_result(Bernoulli(), completed_matrix, truth_matrix, type_tracker,tracker, io = io) # show(io, MIME("text/plain"), timer) # end # end # end # end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
6984
using MatrixCompletion const FLAG_SIMULATION_GAMMA_VARY_RANK_SMALL = false const FLAG_SIMULATION_GAMMA_VARY_RANK_MEDIUM = true const FLAG_SIMULATION_GAMMA_VARY_RANK_LARGE = false const FLAG_SIMULATION_GAMMA_VARY_MISSING_PERCENTAGE_SMALL = false const FLAG_SIMULATION_GAMMA_VARY_MISSING_PERCENTAGE_MEDIUM = false const FLAG_SIMULATION_GAMMA_VARY_MISSING_PERCENTAGE_LARGE = false FLAG_SIMULATION_GAMMA_VARY_RANK_SMALL ? include("simulation_gamma_vary_rank_small.jl") : nothing FLAG_SIMULATION_GAMMA_VARY_RANK_MEDIUM ? include("simulation_gamma_vary_rank_medium.jl") : nothing # @testset "$(format("ADMM Algorithm: Small Input Simulation [Gamma 400 x 400]"))" begin # if SIMULATION_STATUS_GAMMA_VARY_MISSING_PERCENTAGE_LARGE == false # @info("Running Simulation: [Gamma vary rank][SMALL]") # let # Random.seed!(65536) # ROW = 400 # COL = 400 # for input_rank in 1:2:400 # @printf("small case: rank = %d\n", input_rank) # dist = Gamma() # timer = TimerOutput() # Base.Filesystem.mkpath("./test_result/gamma/small(400x400)") # io = open("./test_result/gamma/small(400x400)/rank"*string(input_rank)*".log", "w") # # io = Base.stdout # truth_matrix = rand([(FixedRankMatrix(Distributions.Gamma(10, 0.5), rank = input_rank), ROW, COL)]) # sample_model = provide(Sampler{BernoulliModel}(), rate = 0.8) # input_matrix = sample_model.draw(truth_matrix) # manual_type_matrix = Array{Symbol}(undef, ROW, COL) # manual_type_matrix .= :Gamma # @timeit timer "Gamma(400x400)" * "| rank="*string(input_rank) begin # completed_matrix, type_tracker, tracker = complete(A = input_matrix, # maxiter = 200, # ρ = 0.3, # use_autodiff = false, # gd_iter = 3, # debug_mode = false, # project_rank = nothing, # io = io, # type_assignment = manual_type_matrix) # end # log_simulation_result(Gamma(), completed_matrix, truth_matrix, type_tracker,tracker, io = io) # show(io, MIME("text/plain"), timer) # end # end # else # @info("Already Completed Simualtion[Gamma vary rank][SMALL]") # end # end # @testset "$(format("ADMM Algorithm: Medium Input Simulation [Gamma 2000 x 2000]"))" begin # if SIMULATION_STATUS_GAMMA_VARY_RANK_MEDIUM == false # @info("Running Simulation: [Gamma vary rank][MEDIUM]") # let # Random.seed!(65536) # ROW = 2000 # COL = 2000 # for input_rank in collect(400:10:500) # @printf("medium case: rank = %d\n", input_rank) # dist = Gamma() # timer = TimerOutput() # Base.Filesystem.mkpath("./test_result/gamma/medium(2000x2000)") # io = open("./test_result/gamma/medium(2000x2000)/rank"*string(input_rank)*".log", "w") # # io = Base.stdout # truth_matrix = rand([(FixedRankMatrix(Distributions.Gamma(10, 0.5), rank = input_rank), ROW, COL)]) # sample_model = provide(Sampler{BernoulliModel}(), rate = 0.8) # input_matrix = sample_model.draw(truth_matrix) # manual_type_matrix = Array{Symbol}(undef, ROW, COL) # manual_type_matrix .= :Gamma # @timeit timer "Gamma(2000x2000)" * "| rank="*string(input_rank) begin # completed_matrix, type_tracker, tracker = complete(A = input_matrix, # maxiter = 200, # ρ = 0.3, # use_autodiff = false, # gd_iter = 3, # debug_mode = false, # project_rank = input_rank, # io = io, # type_assignment = manual_type_matrix) # end # log_simulation_result(Gamma(), completed_matrix, truth_matrix, type_tracker,tracker, io = io) # show(io, MIME("text/plain"), timer) # end # end # else # @info("Already Completed Simualtion[Gamma vary rank][MEDIUM]") # end # end # @testset "$(format("ADMM Algorithm: Large Input Simulation [Gamma 4000 x 4000]"))" begin # let # Random.seed!(65536) # ROW = 2000 # COL = 2000 # for input_rank in union(1, collect(10:20:1000)) # @printf("medium case: rank = %d\n", input_rank) # dist = Gamma() # timer = TimerOutput() # Base.Filesystem.mkpath("./test_result/gamma/medium(2000x2000)") # io = open("./test_result/gamma/medium(2000x2000)/rank"*string(input_rank)*".log", "w") # # io = Base.stdout # truth_matrix = rand([(FixedRankMatrix(Distributions.Gamma(10, 0.5), rank = input_rank), ROW, COL)]) # sample_model = provide(Sampler{BernoulliModel}(), rate = 0.8) # input_matrix = sample_model.draw(truth_matrix) # manual_type_matrix = Array{Symbol}(undef, ROW, COL) # manual_type_matrix .= :Gamma # @timeit timer "Gamma(2000x2000)" * "| rank="*string(input_rank) begin # completed_matrix, type_tracker, tracker = complete(A = input_matrix, # maxiter = 200, # ρ = 0.3, # use_autodiff = false, # gd_iter = 3, # debug_mode = false, # project_rank = nothing, # io = io, # type_assignment = manual_type_matrix) # end # log_simulation_result(Gamma(), completed_matrix, truth_matrix, type_tracker,tracker, io = io) # show(io, MIME("text/plain"), timer) # end # end # end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
6541
const SIMULATION_STATUS_GAUSSIAN_VARY_RANK_SMALL = true const SIMULATION_STATUS_GAUSSIAN_VARY_RANK_MEDIUM = false const SIMULATION_STATUS_GAUSSIAN_VARY_RANK_LARGE = nothing const SIMULATION_STATUS_GAUSSIAN_VARY_MISSING_PERCENTAGE_SMALL = false const SIMULATION_STATUS_GAUSSIAN_VARY_MISSING_PERCENTAGE_MEDIUM = false const SIMULATION_STATUS_GAUSSIAN_VARY_MISSING_PERCENTAGE_LARGE = nothing @testset "$(format("ADMM Algorithm: Small Input Simulation [Gaussian 400 x 400]"))" begin if SIMULATION_STATUS_GAUSSIAN_VARY_RANK_SMALL == true let Random.seed!(65536) ROW = 400 COL = 400 for input_rank in 1:400 @printf("small case: rank = %d\n", input_rank) dist = Gaussian() timer = TimerOutput() RESULTS_DIR = GLOBAL_SIMULATION_RESULTS_DIR * "gaussian/small(400x400)(vary_rank)/" * "rank" * string(input_rank) * "/" LOG_FILE_NAME = "io.log" DATA_FILE_NAME = "saved_variables.h5" LOG_FILE_PATH = RESULTS_DIR * LOG_FILE_NAME DATA_FILE_PATH = RESULTS_DIR * DATA_FILE_NAME Base.Filesystem.mkpath(RESULTS_DIR) io = open(LOG_FILE_PATH, "w") truth_matrix = rand([(FixedRankMatrix(Distributions.Gaussian(10, 5), rank = input_rank), ROW, COL)]) sample_model = provide(Sampler{BernoulliModel}(), rate = 0.8) input_matrix = sample_model.draw(truth_matrix) manual_type_matrix = Array{Symbol}(undef, ROW, COL) manual_type_matrix .= :Gaussian @timeit timer "Gaussian(400x400)" * "| rank=" * string(input_rank) begin completed_matrix, type_tracker, tracker = complete(A = input_matrix, maxiter = 200, ρ = 0.3, use_autodiff = false, gd_iter = 3, debug_mode = false, project_rank = nothing, io = io, type_assignment = manual_type_matrix) end predicted_matrix = predict(MatrixCompletionModel(), completed_matrix = completed_matrix, type_tracker = type_tracker) summary_object = summary(MatrixCompletionModel(), predicted_matrix = predicted_matrix, truth_matrix = truth_matrix, type_tracker = type_tracker, tracker = tracker) pickle(DATA_FILE_PATH, "missing_idx" => type_tracker[:Missing], "completed_matrix" => completed_matrix, "predicted_matrix" => predicted_matrix, "truth_matrix" => truth_matrix, "summary" => summary_object) print(io, JSON.json(summary_object, 4)) print(io, timer) close(io) end end else @info("Already Completed Simualtion[Gaussian vary rank][SMALL]") end end @testset "$(format("ADMM Algorithm: Medium Input Simulation [Gaussian 2000 x 2000]"))" begin if SIMULATION_STATUS_GAUSSIAN_VARY_RANK_MEDIUM == true let Random.seed!(65536) ROW = 2000 COL = 2000 for input_rank in union(1, collect(10:10:500)) @printf("medium case: rank = %d\n", input_rank) dist = Gaussian() timer = TimerOutput() RESULTS_DIR = GLOBAL_SIMULATION_RESULTS_DIR * "gaussian/medium(2000x2000)(vary_rank)/" * "rank" * string(input_rank) * "/" LOG_FILE_NAME = "io.log" DATA_FILE_NAME = "saved_variables.h5" LOG_FILE_PATH = RESULTS_DIR * LOG_FILE_NAME DATA_FILE_PATH = RESULTS_DIR * DATA_FILE_NAME Base.Filesystem.mkpath(RESULTS_DIR) io = open(LOG_FILE_PATH, "w") truth_matrix = rand([(FixedRankMatrix(Distributions.Gaussian(10, 5), rank = input_rank), ROW, COL)]) sample_model = provide(Sampler{BernoulliModel}(), rate = 0.8) input_matrix = sample_model.draw(truth_matrix) manual_type_matrix = Array{Symbol}(undef, ROW, COL) manual_type_matrix .= :Gaussian @timeit timer "Gaussian(2000x2000)" * "| rank=" * string(input_rank) begin completed_matrix, type_tracker, tracker = complete(A = input_matrix, maxiter = 200, ρ = 0.3, use_autodiff = false, gd_iter = 3, debug_mode = false, project_rank = input_rank, io = io, type_assignment = manual_type_matrix) end predicted_matrix = predict(MatrixCompletionModel(), completed_matrix = completed_matrix, type_tracker = type_tracker) summary_object = summary(MatrixCompletionModel(), predicted_matrix = predicted_matrix, truth_matrix = truth_matrix, type_tracker = type_tracker, tracker = tracker) pickle(DATA_FILE_PATH, "missing_idx" => type_tracker[:Missing], "completed_matrix" => completed_matrix, "predicted_matrix" => predicted_matrix, "truth_matrix" => truth_matrix, "summary" => summary_object) print(io, JSON.json(summary_object, 4)) print(io, timer) close(io) end end else @info("Already Completed Simualtion[Gaussian vary rank][MEDIUM]") end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
4114
import Distributions using MatrixCompletion import Random using TimerOutputs const to = TimerOutput() function log_simulation_result(dist::ExponentialFamily, completed_matrix, truth_matrix, type_tracker; io = Base.stdout) predicted = predict(dist, forward_map(dist, completed_matrix[type_tracker[convert(Symbol, dist)]])) truth = truth_matrix[type_tracker[convert(Symbol, dist)]] summary = provide(Diagnostics{Any}(), reference = truth, input_data = predicted) @printf(io, "\nSummary about %s\n%s\n", string(convert(Symbol, dist)), repeat("-", 80)) show(io, MIME("text/plain"), summary) print(io, "\n") end @testset "$(format("ADMM Algorithm: Small Input[Gaussian + Bernoulli]"))" begin let Random.seed!(65536) for i in 1:200 @printf("small case: rank = %d\n", i) io = open("./test_result/gaussian_bernoulli/small/rank"*string(2*i)*".txt", "w") truth_matrix = rand([(FixedRankMatrix(Distributions.Gaussian(5, 10), rank = i), 400, 200), (FixedRankMatrix(Distributions.Bernoulli(0.5), rank = i), 400, 200)]) sample_model = provide(Sampler{BernoulliModel}(), rate = 0.8) input_matrix = sample_model.draw(truth_matrix) @timeit to "Gaussian + Bernoulli" completed_matrix, type_tracker = complete(A = input_matrix, maxiter = 200, ρ = 0.3, use_autodiff = false, gd_iter = 3, debug_mode = false, project_rank = 2 * i, io = io) log_simulation_result(Bernoulli(), completed_matrix, truth_matrix, type_tracker, io = io) log_simulation_result(Gaussian(), completed_matrix, truth_matrix, type_tracker, io = io) show(io, MIME("text/plain"), to) close(io) end end end @testset "$(format("ADMM Algorithm: Medium Input[Gaussian + Bernoulli]"))" begin let Random.seed!(65536) for i in 1:10:500 @printf("medium case: rank = %d\n", i) io = open("./test_result/gaussian_bernoulli/small/rank"*string(2*i)*".txt", "w") truth_matrix = rand([(FixedRankMatrix(Distributions.Gaussian(5, 10), rank = i), 2000, 1000), (FixedRankMatrix(Distributions.Bernoulli(0.5), rank = i), 2000, 1000)]) sample_model = provide(Sampler{BernoulliModel}(), rate = 0.8) input_matrix = sample_model.draw(truth_matrix) @timeit to "Gaussian + Bernoulli" completed_matrix, type_tracker = complete(A = input_matrix, maxiter = 200, ρ = 0.3, use_autodiff = false, gd_iter = 3, debug_mode = false, project_rank = 2 * i, io = io) log_simulation_result(Bernoulli(), completed_matrix, truth_matrix, type_tracker, io = io) log_simulation_result(Gaussian(), completed_matrix, truth_matrix, type_tracker, io = io) show(io, MIME("text/plain"), to) close(io) end end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
1787
# @testset "$(format("ADMM Algorithm: Small Input[Gaussian + Bernoulli + Poisson + Gamma + NegativeBinomial]"))" begin # let # Random.seed!(65536) # for i in 1:200 # @printf("small case: rank = %d\n", i) # io = open("./test_result/gaussian_bernoulli/small/rank"*string(2*i)*".txt", "w") # truth_matrix = rand([(FixedRankMatrix(Distributions.Gaussian(5, 10), rank = i), 400, 200), # (FixedRankMatrix(Distributions.Bernoulli(0.5), rank = i), 400, 200)]) # sample_model = provide(Sampler{BernoulliModel}(), rate = 0.8) # input_matrix = sample_model.draw(truth_matrix) # @timeit to "Gaussian + Bernoulli" completed_matrix, type_tracker = complete(A = input_matrix, # maxiter = 200, # ρ = 0.3, # use_autodiff = false, # gd_iter = 3, # debug_mode = false, # project_rank = 2 * i, # io = io) # log_simulation_result(Bernoulli(), completed_matrix, truth_matrix, type_tracker, io = io) # log_simulation_result(Gaussian(), completed_matrix, truth_matrix, type_tracker, io = io) # show(io, MIME("text/plain"), to) # close(io) # end # end # end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
615
const FLAG_SIMULATION_MIXED_VARY_RANK_SMALL = false const FLAG_SIMULATION_MIXED_VARY_RANK_MEDIUM = true const FLAG_SIMULATION_MIXED_VARY_RANK_LARGE = false const FLAG_SIMULATION_MIXED_VARY_MISSING_PERCENTAGE_SMALL = false const FLAG_SIMULATION_MIXED_VARY_MISSING_PERCENTAGE_MEDIUM = false const FLAG_SIMULATION_MIXED_VARY_MISSING_PERCENTAGE_LARGE = false FLAG_SIMULATION_MIXED_VARY_RANK_SMALL ? include("simulation_mixed_vary_rank_small.jl") : nothing FLAG_SIMULATION_MIXED_VARY_RANK_MEDIUM ? include("simulation_mixed_vary_rank_medium.jl") : nothing
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
825
const FLAG_SIMULATION_NEGATIVE_BINOMIAL_VARY_RANK_SMALL = false const FLAG_SIMULATION_NEGATIVE_BINOMIAL_VARY_RANK_MEDIUM = true const FLAG_SIMULATION_NEGATIVE_BINOMIAL_VARY_RANK_LARGE = false const FLAG_SIMULATION_NEGATIVE_BINOMIAL_VARY_MISSING_PERCENTAGE_SMALL = false const FLAG_SIMULATION_NEGATIVE_BINOMIAL_VARY_MISSING_PERCENTAGE_MEDIUM = false const FLAG_SIMULATION_NEGATIVE_BINOMIAL_VARY_MISSING_PERCENTAGE_LARGE = false FLAG_SIMULATION_NEGATIVE_BINOMIAL_VARY_RANK_SMALL ? include("simulation_negbin_vary_rank_small.jl") : nothing FLAG_SIMULATION_NEGATIVE_BINOMIAL_VARY_RANK_MEDIUM ? include("simulation_negbin_vary_rank_medium.jl") : nothing FLAG_SIMULATION_NEGATIVE_BINOMIAL_VARY_RANK_LARGE ? include("simulation_negbin_vary_rank_large.jl") : nothing
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
4663
const FLAG_SIMULATION_POISSON_VARY_RANK_SMALL = false const FLAG_SIMULATION_POISSON_VARY_RANK_MEDIUM = true const FLAG_SIMULATION_POISSON_VARY_RANK_LARGE = false const FLAG_SIMULATION_POISSON_VARY_MISSING_PERCENTAGE_SMALL = false const FLAG_SIMULATION_POISSON_VARY_MISSING_PERCENTAGE_MEDIUM = false const FLAG_SIMULATION_POISSON_VARY_MISSING_PERCENTAGE_LARGE = false FLAG_SIMULATION_POISSON_VARY_RANK_SMALL ? include("simulation_poisson_vary_rank_small.jl") : nothing FLAG_SIMULATION_POISSON_VARY_RANK_MEDIUM ? include("simulation_poisson_vary_rank_medium.jl") : nothing # @testset "$(format("ADMM Algorithm: Small Input Simulation [Poisson 400 x 400]"))" begin # if SIMULATION_STATUS_POISSON_VARY_RANK_SMALL == false # let # Random.seed!(65536) # ROW = 400 # COL = 400 # for input_rank in 1:2:400 # @printf("small case: rank = %d\n", input_rank) # dist = Poisson() # timer = TimerOutput() # Base.Filesystem.mkpath("./test_result/poisson/small(400x400)") # io = open("./test_result/poisson/small(400x400)/rank"*string(input_rank)*".log", "w") # truth_matrix = rand([(FixedRankMatrix(Distributions.Poisson(5), rank = input_rank), ROW, COL)]) # sample_model = provide(Sampler{BernoulliModel}(), rate = 0.8) # input_matrix = sample_model.draw(truth_matrix) # manual_type_matrix = Array{Symbol}(undef, ROW, COL) # manual_type_matrix .= :Poisson # @timeit timer "Poisson(400x400)" * "| rank="*string(input_rank) begin # completed_matrix, type_tracker, tracker = complete(A = input_matrix, # maxiter = 200, # ρ = 0.3, # use_autodiff = false, # gd_iter = 3, # debug_mode = false, # project_rank = nothing, # io = io, # type_assignment = manual_type_matrix) # end # log_simulation_result(Poisson(), completed_matrix, truth_matrix, type_tracker,tracker, io = io) # show(io, MIME("text/plain"), timer) # end # end # end # end # @testset "$(format("ADMM Algorithm: Medium Input Simulation [Poisson 2000 x 2000]"))" begin # if SIMULATION_STATUS_POISSON_VARY_RANK_MEDIUM == false # let # Random.seed!(65536) # ROW = 2000 # COL = 2000 # for input_rank in union(1, collect(10:10:500)) # @printf("medium case: rank = %d\n", input_rank) # dist = Poisson() # timer = TimerOutput() # Base.Filesystem.mkpath("./test_result/poisson/medium(2000x2000)") # io = open("./test_result/poisson/medium(2000x2000)/rank"*string(input_rank)*".log", "w") # truth_matrix = rand([(FixedRankMatrix(Distributions.Poisson(5), rank = input_rank), ROW, COL)]) # sample_model = provide(Sampler{BernoulliModel}(), rate = 0.8) # input_matrix = sample_model.draw(truth_matrix) # manual_type_matrix = Array{Symbol}(undef, ROW, COL) # manual_type_matrix .= :Poisson # @timeit timer "Poisson(2000x2000)" * "| rank="*string(input_rank) begin # completed_matrix, type_tracker, tracker = complete(A = input_matrix, # maxiter = 200, # ρ = 0.3, # use_autodiff = false, # gd_iter = 3, # debug_mode = false, # project_rank = input_rank, # io = io, # type_assignment = manual_type_matrix) # end # log_simulation_result(Poisson(), completed_matrix, truth_matrix, type_tracker,tracker, io = io) # show(io, MIME("text/plain"), timer) # end # end # end # end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
1206
using MatrixCompletion.Utilities.FastEigen using IterativeSolvers using LinearAlgebra using Test function create_symmetric_matrix(n) a = rand(n,n)*5 return a+a' end function correct_output_sparseeigen(input,k) eigen_dcp = LinearAlgebra.eigen(input); eigen_val = eigen_dcp.values; eigen_vec = eigen_dcp.vectors; first_k_idx = Base.sortperm(eigen_val,rev=true)[1:k]; return eigen_val[first_k_idx],eigen_vec[:,first_k_idx]; end function get_projection(v,e) return e * Diagonal(v) * e'; end function test_native_eigen(;dim=500,nev=20,repeat=5) for i = 1:repeat input = create_symmetric_matrix(dim); @time λ,X = eigs(NativeEigen(),input;nev=nev); λ0,X0 = correct_output_sparseeigen(input,nev); @test norm(get_projection(λ,X) - get_projection(λ0,X0),2)<1e-3; end end function test_lobpcg_wrapper(;dim=1000,nev=20,repeat=5) input = create_symmetric_matrix(dim); for i = 1:repeat @time λ,X = eigs(NativeLOBPCG(),input;nev=nev); end end function test_lobpcg_via_import(;dim=1000,nev=20,repeat=5) input = create_symmetric_matrix(dim); for i = 1:5 @time lobpcg(input,true,nev); end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
122
try include("sparse_eigen_test.jl") catch end try include("./test/sparse_eigen_test.jl") catch end test_native_eigen()
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
5555
import Distributions using MatrixCompletion import Random using TimerOutputs const to = TimerOutput() @testset "$(format("ADMM Algorithm: Small Input[Negative Binomial User Input]"))" begin let for i = 5:2:200 @printf("[Small] Currently doing rank %d\n", i) Random.seed!(65536) io = open("./test_result/negbin/small/rank"*string(i)*".txt", "w") r_input = 6 input_size = 200 input_rank = i truth_matrix = rand([(FixedRankMatrix(Distributions.NegativeBinomial(r_input, 0.8), rank = input_rank), input_size, input_size)]) sample_model = provide(Sampler{BernoulliModel}(), rate = 0.8) input_matrix = sample_model.draw(truth_matrix) user_input_estimators = Dict(:NegativeBinomial=> Dict(:r=>r_input, :p=>0.8)) manual_type_input = Array{Symbol}(undef, input_size, input_size) manual_type_input .= :NegativeBinomial # display(input_matrix) @timeit to "neg small" completed_matrix, type_tracker = complete(A = input_matrix, maxiter = 200, ρ = 0.3, use_autodiff = false, gd_iter = 3, debug_mode = false, type_assignment = manual_type_input, user_input_estimators = user_input_estimators, project_rank = input_rank, io = io) # display(completed_matrix[1:10, 1:10]) predicted_negative_binomial = predict(NegativeBinomial(), forward_map(NegativeBinomial(), completed_matrix[type_tracker[:NegativeBinomial]], r_estimate = r_input)) truth_negative_binomial = truth_matrix[type_tracker[:NegativeBinomial]] summary_negative_binomial = provide(Diagnostics{Any}(), reference = truth_negative_binomial, input_data = predicted_negative_binomial) show(io, MIME("text/plain"), summary_negative_binomial) print(io, "\n") show(io, MIME("text/plain"), to) close(io) end end end @testset "$(format("ADMM Algorithm: Medium Input[Negative Binomial User Input]"))" begin let for i = 5:20:500 @printf("[Medium] Currently doing rank %d\n ", i) Random.seed!(65536) io = open("./test_result/negbin/medium/rank"*string(i)*".txt", "w") # io = stdout r_input = 6 input_size = 2000 input_rank = i truth_matrix = rand([(FixedRankMatrix(Distributions.NegativeBinomial(r_input, 0.8), rank = input_rank), input_size, input_size)]) sample_model = provide(Sampler{BernoulliModel}(), rate = 0.8) input_matrix = sample_model.draw(truth_matrix) user_input_estimators = Dict(:NegativeBinomial=> Dict(:r=>r_input, :p=>0.8)) manual_type_input = Array{Symbol}(undef, input_size, input_size) manual_type_input .= :NegativeBinomial # display(input_matrix) @timeit to "neg medium" completed_matrix, type_tracker = complete(A = input_matrix, maxiter = 200, ρ = 0.3, use_autodiff = true, gd_iter = 3, debug_mode = false, type_assignment = manual_type_input, user_input_estimators = user_input_estimators, project_rank = input_rank, io = io) predicted_negative_binomial = predict(NegativeBinomial(), forward_map(NegativeBinomial(), completed_matrix[type_tracker[:NegativeBinomial]], r_estimate = r_input)) truth_negative_binomial = truth_matrix[type_tracker[:NegativeBinomial]] summary_negative_binomial = provide(Diagnostics{Any}(), reference = truth_negative_binomial, input_data = predicted_negative_binomial) show(io, MIME("text/plain"), summary_negative_binomial) print(io, "\n") show(io, MIME("text/plain"), to) close(io) end end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
864
@testset "$(format("Concept: MaybeMissing[Conversion][VecOrMat]"))" begin let tc1 = [1,2,3,4] output1 = convert(MaybeMissing{Number},tc1) @test isa(output1,Array{MaybeMissing{Number}}) == true @test output1 == tc1 #see(output1) output2 = convert(MaybeMissing{Float64},tc1) @test isa(output2, Array{MaybeMissing{Float64}}) == true #display(output2) # test array of missing tc2 = [missing, missing, missing] output3 = convert(MaybeMissing{Float64},tc2) @test isa(output3,Array{MaybeMissing{Float64}}) == true output3[1] = 1.0 @test output3[1] == 1.0 && ismissing(output3[2]) && ismissing(output3[3]) @test isa(convert(MaybeMissing{Float64},[missing missing;missing missing]), Array{MaybeMissing{Float64}}) == true end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
3516
@testset "$(_gen("Optimizer: Gamma Loss [Small][Forgiving][Native]"))" begin @timeit to "Optimizer: Gamma Loss [Small][Forgiving][Native]" begin @test unit_test_train_subloss(AbstractGamma(), gradient_eval = Loss{AbstractGamma}(), input_distribution = Distributions.Gamma(5,0.5), input_size = 1000, ρ = 0, step_size = 0.1, max_iter = 100) > 0.9 @test unit_test_train_subloss(AbstractGamma(), gradient_eval = Loss{AbstractGamma}(), input_distribution = Distributions.Gamma(5,0.5), input_size = 3000, ρ = 0, step_size = 0.1, max_iter = 100) > 0.9 @test unit_test_train_subloss(AbstractGamma(), gradient_eval = Loss{AbstractGamma}(), input_distribution = Distributions.Gamma(5,0.5), input_size = 5000, ρ = 0, step_size = 0.1, max_iter = 100) > 0.9 @test unit_test_train_subloss(AbstractGamma(), gradient_eval = Loss{AbstractGamma}(), input_distribution = Distributions.Gamma(5,0.5), input_size = 1000, ρ = 0.2, step_size = 0.1, max_iter = 100) > 0.9 @test unit_test_train_subloss(AbstractGamma(), gradient_eval = Loss{AbstractGamma}(), input_distribution = Distributions.Gamma(5,0.5), input_size = 3000, ρ = 0.2, step_size = 0.1,max_iter = 100) > 0.9 @test unit_test_train_subloss(AbstractGamma(), gradient_eval = Loss{AbstractGamma}(), input_distribution = Distributions.Gamma(5,0.5), input_size = 5000, ρ = 0.2, step_size = 0.1, max_iter = 100) > 0.9 @test unit_test_train_subloss(AbstractGamma(), gradient_eval = Loss{AbstractGamma}(), input_distribution = Distributions.Gamma(5,0.5), input_size = 5000, ρ = 0.2, step_size = 0.1, max_iter = 100) > 0.9 end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
5479
@testset "$(_gen("Optimizer: Poisson Loss [Small][Forgiving][AutoGrad]"))" begin @timeit to "Optimizer: Poisson Loss [Small][Forgiving][AutoGrad]" begin @test unit_test_train_subloss(gradient_eval = provide(Loss{AbstractPoisson}()), input_distribution = Distributions.Poisson(10), input_size = 1000, ρ = 0, step_size = 0.1, max_iter = 100) > 0.9 @test unit_test_train_subloss(gradient_eval = provide(Loss{AbstractPoisson}()), input_distribution = Distributions.Poisson(10), input_size = 3000, ρ = 0, step_size = 0.1, max_iter = 100) > 0.9 @test unit_test_train_subloss(gradient_eval = provide(Loss{AbstractPoisson}()), input_distribution = Distributions.Poisson(10), input_size = 5000, ρ = 0, step_size = 0.1, max_iter = 100) > 0.9 @test unit_test_train_subloss(gradient_eval = provide(Loss{AbstractPoisson}()), input_distribution = Distributions.Poisson(10), input_size = 1000, ρ = 0.2, step_size = 0.1, max_iter = 100) > 0.9 @test unit_test_train_subloss(gradient_eval = provide(Loss{AbstractPoisson}()), input_distribution = Distributions.Poisson(10), input_size = 3000, ρ = 0.2, step_size = 0.1,max_iter = 100) > 0.9 @test unit_test_train_subloss(gradient_eval = provide(Loss{AbstractPoisson}()), input_distribution = Distributions.Poisson(10), input_size = 5000, ρ = 0.2, step_size = 0.1, max_iter = 100) > 0.9 end end @testset "$(_gen("Optimizer: Poisson Loss [Small][Forgiving][Native]"))" begin @timeit to "Optimizer: Poisson Loss [Small][Forgiving][Native]" begin @test unit_test_train_subloss(gradient_eval = Loss{AbstractPoisson}(), input_distribution = Distributions.Poisson(10), input_size = 1000, ρ = 0, step_size = 0.1, max_iter = 100) > 0.9 @test unit_test_train_subloss(gradient_eval = Loss{AbstractPoisson}(), input_distribution = Distributions.Poisson(10), input_size = 3000, ρ = 0, step_size = 0.1, max_iter = 100) > 0.9 @test unit_test_train_subloss(gradient_eval = Loss{AbstractPoisson}(), input_distribution = Distributions.Poisson(10), input_size = 5000, ρ = 0, step_size = 0.1, max_iter = 100) > 0.9 @test unit_test_train_subloss(gradient_eval = Loss{AbstractPoisson}(), input_distribution = Distributions.Poisson(10), input_size = 1000, ρ = 0.2, step_size = 0.1, max_iter = 100) > 0.9 @test unit_test_train_subloss(gradient_eval = Loss{AbstractPoisson}(), input_distribution = Distributions.Poisson(10), input_size = 3000, ρ = 0.2, step_size = 0.1,max_iter = 100) > 0.9 @test unit_test_train_subloss(gradient_eval = Loss{AbstractPoisson}(), input_distribution = Distributions.Poisson(10), input_size = 5000, ρ = 0.2, step_size = 0.1, max_iter = 100) > 0.9 end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
1487
@testset "$(format("Sampling: UniformModel[VecOrMat]"))" begin #==================== Vector Case ====================# let tc1 = rand(10000) output = Sampler(UniformModel(0.5)).draw(tc1) @test count(x->ismissing(x),output) > 1000 @test count(x->!ismissing(x),output) > 1000 # stronger tc2 = rand(10000) output = Sampler(UniformModel(0.1)).draw(tc2) @test count(x->ismissing(x),output) >1000 @test count(x->!ismissing(x),output) <1000 end #==================== Matrix Case ====================# let @test 4 <= count(x -> !ismissing(x),Sampler(UniformModel(0.1)).draw(ones(10,10))) <= 10 @test 10 < count(x -> ismissing(x), Sampler(UniformModel(0.1)).draw(ones(10,10))) end #==================== Factory Mode ====================# let sampler = provide(Sampler{UniformModel}(),rate = 0.5) tc1 = rand(10000) output = sampler.draw(tc1) @test count(x->ismissing(x),output) > 1000 @test count(x->!ismissing(x),output) > 1000 # stronger tc2 = rand(10000) sampler2 = provide(Sampler{UniformModel}(),rate = 0.1) output = sampler2.draw(tc2) @test count(x->ismissing(x),output) >1000 @test count(x->!ismissing(x),output) <=1000 @test 4 <= count(x -> !ismissing(x),sampler2.draw(ones(10,10))) <= 10 @test 10 < count(x -> ismissing(x),sampler2.draw(ones(10,10))) end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
23164
# include("admm_test.jl") # test_admm_with_autodiff_smallinput(gd_iter=3,dbg=true) # test_admm_without_autodiff_smallinput(gd_iter=3) #test_admm_without_autodiff_largeinput(gd_iter=3,dbg=true) using LinearAlgebra # @testset "$(format("ADMM Algorithm: Small Input[Gaussian + Bernoulli]"))" begin # let # truth_matrix = rand([(FixedRankMatrix(Distributions.Gaussian(5, 10), rank = 5), 200, 100), # (FixedRankMatrix(Distributions.Bernoulli(0.5), rank = 5), 200, 100)]) # sample_model = provide(Sampler{BernoulliModel}(), rate = 0.8) # input_matrix = sample_model.draw(truth_matrix) # display(input_matrix) # @time completed_matrix, type_tracker = complete(A = input_matrix, # maxiter = 200, # ρ = 0.3, # use_autodiff = false, # gd_iter = 3, # debug_mode = false) # predicted_bernoulli = predict(Bernoulli(), # forward_map(Bernoulli(), completed_matrix[type_tracker[:Bernoulli]])) # truth_bernoulli = truth_matrix[type_tracker[:Bernoulli]] # summary_bernoulli = provide(Diagnostics{Any}(), # reference = truth_bernoulli, # input_data = predicted_bernoulli) # display(summary_bernoulli) # predicted_gaussian = predict(Gaussian(), # forward_map(Gaussian(), completed_matrix[type_tracker[:Gaussian]])) # truth_gaussian = truth_matrix[type_tracker[:Gaussian]] # summary_gaussian = provide(Diagnostics{Any}(), # reference = truth_gaussian, # input_data = predicted_gaussian) # display(summary_gaussian) # end # end # @testset "$(format("ADMM Algorithm: Small Input[Gaussian + Poisson]"))" begin # let # truth_matrix = rand([(FixedRankMatrix(Distributions.Gaussian(5, 10), rank = 5), 200, 100), # (FixedRankMatrix(Distributions.Poisson(10), rank = 10), 200, 100)]) # sample_model = provide(Sampler{BernoulliModel}(), rate = 0.8) # input_matrix = sample_model.draw(truth_matrix) # display(input_matrix) # completed_matrix, type_tracker = complete(A = input_matrix, # maxiter = 200, # ρ = 0.3, # use_autodiff = false, # gd_iter = 5, # debug_mode = false) # predicted_poisson = predict(Poisson(), # forward_map(Poisson(), completed_matrix[type_tracker[:Poisson]])) # truth_poisson = truth_matrix[type_tracker[:Poisson]] # summary_poisson = provide(Diagnostics{Any}(), # reference = truth_poisson, # input_data = predicted_poisson) # display(summary_poisson) # predicted_gaussian = predict(Gaussian(), # forward_map(Gaussian(), completed_matrix[type_tracker[:Gaussian]])) # truth_gaussian = truth_matrix[type_tracker[:Gaussian]] # summary_gaussian = provide(Diagnostics{Any}(), # reference = truth_gaussian, # input_data = predicted_gaussian) # display(summary_gaussian) # end # end # @testset "$(format("ADMM Algorithm: Small Input[Gaussian + Poisson + Bernoulli]"))" begin # let # truth_matrix = rand([(FixedRankMatrix(Distributions.Gaussian(5, 10), rank = 5), 300, 100), # (FixedRankMatrix(Distributions.Poisson(10), rank = 5), 300, 100), # (FixedRankMatrix(Distributions.Bernoulli(0.5), rank = 5), 300, 100)]) # sample_model = provide(Sampler{BernoulliModel}(), rate = 0.8) # input_matrix = sample_model.draw(truth_matrix) # display(input_matrix) # completed_matrix, type_tracker = complete(A = input_matrix, # maxiter = 200, # ρ = 0.3, # use_autodiff = false, # gd_iter = 5, # debug_mode = false) # predicted_poisson = predict(Poisson(), # forward_map(Poisson(), completed_matrix[type_tracker[:Poisson]])) # truth_poisson = truth_matrix[type_tracker[:Poisson]] # summary_poisson = provide(Diagnostics{Any}(), # reference = truth_poisson, # input_data = predicted_poisson) # display(summary_poisson) # predicted_gaussian = predict(Gaussian(), # forward_map(Gaussian(), completed_matrix[type_tracker[:Gaussian]])) # truth_gaussian = truth_matrix[type_tracker[:Gaussian]] # summary_gaussian = provide(Diagnostics{Any}(), # reference = truth_gaussian, # input_data = predicted_gaussian) # display(summary_gaussian) # predicted_bernoulli = predict(Bernoulli(), # forward_map(Bernoulli(), completed_matrix[type_tracker[:Bernoulli]])) # truth_bernoulli = truth_matrix[type_tracker[:Bernoulli]] # summary_bernoulli = provide(Diagnostics{Any}(), # reference = truth_bernoulli, # input_data = predicted_bernoulli) # display(summary_bernoulli) # end # end # @testset "$(format("ADMM Algorithm: Medium Input[Gaussian + Poisson + Bernoulli]"))" begin # let # truth_matrix = rand([(FixedRankMatrix(Distributions.Gaussian(5, 10), rank = 5), 300, 100), # (FixedRankMatrix(Distributions.Poisson(10), rank = 5), 300, 100), # (FixedRankMatrix(Distributions.Bernoulli(0.5), rank = 5), 300, 100)]) # sample_model = provide(Sampler{BernoulliModel}(), rate = 0.8) # input_matrix = sample_model.draw(truth_matrix) # display(input_matrix) # completed_matrix, type_tracker = complete(A = input_matrix, # maxiter = 200, # ρ = 0.3, # use_autodiff = false, # gd_iter = 3, # debug_mode = false) # predicted_poisson = predict(Poisson(), # forward_map(Poisson(), completed_matrix[type_tracker[:Poisson]])) # truth_poisson = truth_matrix[type_tracker[:Poisson]] # summary_poisson = provide(Diagnostics{Any}(), # reference = truth_poisson, # input_data = predicted_poisson) # predicted_gaussian = predict(Gaussian(), # forward_map(Gaussian(), completed_matrix[type_tracker[:Gaussian]])) # truth_gaussian = truth_matrix[type_tracker[:Gaussian]] # summary_gaussian = provide(Diagnostics{Any}(), # reference = truth_gaussian, # input_data = predicted_gaussian) # predicted_bernoulli = predict(Bernoulli(), # forward_map(Bernoulli(), completed_matrix[type_tracker[:Bernoulli]])) # truth_bernoulli = truth_matrix[type_tracker[:Bernoulli]] # summary_bernoulli = provide(Diagnostics{Any}(), # reference = truth_bernoulli, # input_data = predicted_bernoulli) # @info("Gaussian") # display(summary_gaussian) # @info("Poisson") # display(summary_poisson) # @info("Bernoulli") # display(summary_bernoulli) # end # end function relative_l2_error(x, y) return LinearAlgebra.norm(x - y, 2)^2 / LinearAlgebra.norm(y)^2 end # @testset "$(format("ADMM Algorithm: Small Input[Gaussian + Poisson + Bernoulli + Gamma]"))" begin # let # truth_matrix = rand([(FixedRankMatrix(Distributions.Gaussian(5, 10), rank = 3), 400, 100), # (FixedRankMatrix(Distributions.Poisson(10), rank = 3), 400, 100), # (FixedRankMatrix(Distributions.Bernoulli(0.5), rank = 3), 400, 100), # (FixedRankMatrix(Distributions.Gamma(10, 2), rank = 3), 400, 100)]) # sample_model = provide(Sampler{BernoulliModel}(), rate = 0.8) # input_matrix = sample_model.draw(truth_matrix) # display(input_matrix) # completed_matrix, type_tracker = complete(A = input_matrix, # maxiter = 200, # ρ = 0.3, # use_autodiff = false, # gd_iter = 3, # debug_mode = false) # predicted_poisson = predict(Poisson(), # forward_map(Poisson(), completed_matrix[type_tracker[:Poisson]])) # truth_poisson = truth_matrix[type_tracker[:Poisson]] # summary_poisson = provide(Diagnostics{Any}(), # reference = truth_poisson, # input_data = predicted_poisson) # predicted_gaussian = predict(Gaussian(), # forward_map(Gaussian(), completed_matrix[type_tracker[:Gaussian]])) # truth_gaussian = truth_matrix[type_tracker[:Gaussian]] # summary_gaussian = provide(Diagnostics{Any}(), # reference = truth_gaussian, # input_data = predicted_gaussian) # predicted_gamma = predict(Gamma(), # forward_map(Gamma(), completed_matrix[type_tracker[:Gamma]])) # truth_gamma = truth_matrix[type_tracker[:Gamma]] # summary_gamma = provide(Diagnostics{Any}(), # reference = truth_gamma, # input_data = predicted_gamma) # predicted_bernoulli = predict(Bernoulli(), # forward_map(Bernoulli(), completed_matrix[type_tracker[:Bernoulli]])) # truth_bernoulli = truth_matrix[type_tracker[:Bernoulli]] # summary_bernoulli = provide(Diagnostics{Any}(), # reference = truth_bernoulli, # input_data = predicted_bernoulli) # @info("Gaussian") # display(summary_gaussian) # @info("Poisson") # display(summary_poisson) # @info("Bernoulli") # display(summary_bernoulli) # @info("Gamma") # display(summary_gamma) # end # end # # 1. rectangular matrices sufficient condition # # 2. big scale simulation # # 3. fix the small dimension # # 4. time performance # # 5. beroulli / uniform # # 6. weighted missing pattern # @testset "$(format("ADMM Algorithm: Small Input[Gaussian + Poisson + Bernoulli + Gamma]"))" begin # let # truth_matrix = rand([(FixedRankMatrix(Distributions.Gaussian(5, 10), rank = 4), 400, 15), # (FixedRankMatrix(Distributions.Poisson(10), rank = 4), 400, 15), # (FixedRankMatrix(Distributions.Bernoulli(0.5), rank = 4), 400, 15), # (FixedRankMatrix(Distributions.Gamma(10, 2), rank = 4), 400, 15)]) # sample_model = provide(Sampler{BernoulliModel}(), rate = 0.8) # input_matrix = sample_model.draw(truth_matrix) # display(input_matrix) # completed_matrix, type_tracker = complete(A = input_matrix, # maxiter = 200, # ρ = 0.3, # use_autodiff = false, # gd_iter = 10, # debug_mode = false) # predicted_poisson = predict(Poisson(), # forward_map(Poisson(), completed_matrix[type_tracker[:Poisson]])) # truth_poisson = truth_matrix[type_tracker[:Poisson]] # summary_poisson = provide(Diagnostics{Any}(), # reference = truth_poisson, # input_data = predicted_poisson) # predicted_gaussian = predict(Gaussian(), # forward_map(Gaussian(), completed_matrix[type_tracker[:Gaussian]])) # truth_gaussian = truth_matrix[type_tracker[:Gaussian]] # summary_gaussian = provide(Diagnostics{Any}(), # reference = truth_gaussian, # input_data = predicted_gaussian) # predicted_gamma = predict(Gamma(), # forward_map(Gamma(), completed_matrix[type_tracker[:Gamma]])) # truth_gamma = truth_matrix[type_tracker[:Gamma]] # summary_gamma = provide(Diagnostics{Any}(), # reference = truth_gamma, # input_data = predicted_gamma) # predicted_bernoulli = predict(Bernoulli(), # forward_map(Bernoulli(), completed_matrix[type_tracker[:Bernoulli]])) # truth_bernoulli = truth_matrix[type_tracker[:Bernoulli]] # summary_bernoulli = provide(Diagnostics{Any}(), # reference = truth_bernoulli, # input_data = predicted_bernoulli) # @info("Gaussian") # display(summary_gaussian) # @info("Poisson") # display(summary_poisson) # @info("Bernoulli") # display(summary_bernoulli) # @info("Gamma") # display(summary_gamma) # end # end # @testset "$(format("ADMM Algorithm: Medium Input[Gaussian + Poisson + Bernoulli + Gamma]"))" begin # let # truth_matrix = rand([(FixedRankMatrix(Distributions.Gaussian(5, 10), rank = 3), 1600, 400), # (FixedRankMatrix(Distributions.Poisson(10), rank = 3), 1600, 400), # (FixedRankMatrix(Distributions.Bernoulli(0.5), rank = 3), 1600, 400), # (FixedRankMatrix(Distributions.Gamma(10, 2), rank = 3), 1600, 400)]) # sample_model = provide(Sampler{BernoulliModel}(), rate = 0.8) # input_matrix = sample_model.draw(truth_matrix) # display(input_matrix) # manual_type_input = Array{Symbol}(undef, 1600, 1600) # manual_type_input[:, 1:400] .= :Gaussian # manual_type_input[:, 401:800] .= :Poisson # manual_type_input[:, 801:1200] .= :Bernoulli # manual_type_input[:, 1201:1600] .= :Gamma # completed_matrix, type_tracker = complete(A = input_matrix, # maxiter = 200, # ρ = 0.3, # use_autodiff = false, # gd_iter = 3, # debug_mode = false, # type_assignment = manual_type_input) # predicted_poisson = predict(Poisson(), # forward_map(Poisson(), completed_matrix[type_tracker[:Poisson]])) # truth_poisson = truth_matrix[type_tracker[:Poisson]] # summary_poisson = provide(Diagnostics{Any}(), # reference = truth_poisson, # input_data = predicted_poisson) # predicted_gaussian = predict(Gaussian(), # forward_map(Gaussian(), completed_matrix[type_tracker[:Gaussian]])) # truth_gaussian = truth_matrix[type_tracker[:Gaussian]] # summary_gaussian = provide(Diagnostics{Any}(), # reference = truth_gaussian, # input_data = predicted_gaussian) # predicted_gamma = predict(Gamma(), # forward_map(Gamma(), completed_matrix[type_tracker[:Gamma]])) # truth_gamma = truth_matrix[type_tracker[:Gamma]] # summary_gamma = provide(Diagnostics{Any}(), # reference = truth_gamma, # input_data = predicted_gamma) # predicted_bernoulli = predict(Bernoulli(), # forward_map(Bernoulli(), completed_matrix[type_tracker[:Bernoulli]])) # truth_bernoulli = truth_matrix[type_tracker[:Bernoulli]] # summary_bernoulli = provide(Diagnostics{Any}(), # reference = truth_bernoulli, # input_data = predicted_bernoulli) # @info("Gaussian") # display(summary_gaussian) # @info("Poisson") # display(summary_poisson) # @info("Bernoulli") # display(summary_bernoulli) # @info("Gamma") # display(summary_gamma) # end # end # @testset "$(format("ADMM Algorithm: Small Input[Gamma]"))" begin # using MatrixCompletion # import Distributions # import LinearAlgebra # truth_matrix = rand([(FixedRankMatrix(Distributions.Gamma(10, 2), rank = 5), 1600, 400)]) # sample_model = provide(Sampler{BernoulliModel}(), rate = 0.8) # input_matrix = sample_model.draw(truth_matrix) # manual_type_input = Array{Symbol}(undef, 1600, 400) # manual_type_input .= :Gamma # completed_matrix, type_tracker = complete(A = input_matrix, # maxiter = 200, # ρ = 0.3, # use_autodiff = false, # gd_iter = 10, # debug_mode = false, # type_assignment = manual_type_input) # predicted_matrix = predict(Gamma(), forward_map(Gamma(), completed_matrix)) # error_matrix = abs.(predicted_matrix - truth_matrix) # total_l2_error = LinearAlgebra.norm(error_matrix, 2)^2 # relative_error = relative_l2_error(predicted_matrix, truth_matrix) # @info("completed") # display(completed_matrix[1:10, 1:10]) # @info("predicted") # display(predicted_matrix[1:10, 1:10]) # @info("truth") # display(truth_matrix[1:10, 1:10]) # @info("error") # display(error_matrix[1:10, 1:10]) # @show(relative_error) # @show(total_l2_error) # end # @testset "$(format("ADMM Algorithm: Small Input[Gaussian + Gamma]"))" begin # let # truth_matrix = rand([(FixedRankMatrix(Distributions.Gaussian(5, 10), rank = 5), 200, 100), # (FixedRankMatrix(Distributions.Gamma(5, 0.5), rank = 5), 200, 100)]) # sample_model = provide(Sampler{BernoulliModel}(), rate = 0.8) # input_matrix = sample_model.draw(truth_matrix) # manual_type_input = Array{Symbol}(undef, 200, 200) # manual_type_input[:, 1:100] .= :Gaussian # manual_type_input[:, 101:200] .= :Gamma # display(input_matrix) # completed_matrix, type_tracker = complete(A = input_matrix, # maxiter = 200, # σ = 0.3, # use_autodiff = false, # gd_iter = 3, # debug_mode = false, # type_assignment = manual_type_input) # predicted_gamma = predict(Gamma(), # forward_map(Gamma(), completed_matrix[type_tracker[:Gamma]])) # truth_gamma = truth_matrix[type_tracker[:Gamma]] # display(truth_gamma - predicted_gamma) # error_matrix = abs.(truth_gamma - predicted_gamma) # relative_error = LinearAlgebra.norm(error_matrix,2)^2 / LinearAlgebra.norm(truth_gamma) ^ 2 # @show(relative_l2_error(predicted_gamma, truth_gamma)) # # summary_gamma = provide(Diagnostics{Any}(), # # reference = truth_gamma, # # input_data = predicted_gamma) # # display(summary_gamma) # predicted_gaussian = predict(Gaussian(), # forward_map(Gaussian(), completed_matrix[type_tracker[:Gaussian]])) # truth_gaussian = truth_matrix[type_tracker[:Gaussian]] # summary_gaussian = provide(Diagnostics{Any}(), # reference = truth_gaussian, # input_data = predicted_gaussian) # display(summary_gaussian) # end # end include("./sub_test_runner_admm_negative_binomial.jl") # include("./sub_test_runner_admm_bernoulli.jl") # include("./sub_test_runner_admm_gaussian.jl") # include("./sub_test_runner_admm_poisson.jl") # include("./sub_test_runner_admm_gamma.jl") # @testset "$(format("ADMM Algorithm: Small Input[Gaussian + Bernoulli, AutoDiff]"))" begin # let # truth_matrix = rand([(FixedRankMatrix(Distributions.Gaussian(5, 10), rank = 2), 200, 100), # (FixedRankMatrix(Distributions.Bernoulli(0.5), rank = 2), 200, 100)]) # sample_model = provide(Sampler{BernoulliModel}(), rate = 0.8) # input_matrix = sample_model.draw(truth_matrix) # display(input_matrix) # completed_matrix, type_tracker = complete(A = input_matrix, # maxiter = 200, # σ = 0.3, # use_autodiff = true, # gd_iter = 3, # debug_mode = false) # predicted_bernoulli = predict(Bernoulli(), # forward_map(Bernoulli(), completed_matrix[type_tracker[:Bernoulli]])) # truth_bernoulli = truth_matrix[type_tracker[:Bernoulli]] # summary_bernoulli = provide(Diagnostics{Any}(), # reference = truth_bernoulli, # input_data = predicted_bernoulli) # display(summary_bernoulli) # predicted_gaussian = predict(Gaussian(), # forward_map(Gaussian(), completed_matrix[type_tracker[:Gaussian]])) # truth_gaussian = truth_matrix[type_tracker[:Gaussian]] # summary_gaussian = provide(Diagnostics{Any}(), # reference = truth_gaussian, # input_data = predicted_gaussian) # display(summary_gaussian) # end # end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
6644
# using MatrixCompletion const TEST_CHAINED_ALM_SMALL_RANDOM = true const TEST_ONESHOT_ALM_SMALL_RANDOM = false import LinearAlgebra: norm import Random function run_chained_alm_randomized(;m = nothing, n = nothing, k = nothing, impute_round = 10, sample_rate = nothing, data = nothing, sampled_data = nothing, prox_params = nothing, init_X = nothing, init_Y = nothing) local truth_matrix if isnothing(data) truth_matrix = randn(m, k) * randn(k, n) else truth_matrix = data m, n = Base.size(data) end if isnothing(sample_rate) && !isnothing(sampled_data) input_matrix = sampled_data else sample_model = provide(Sampler{BernoulliModel}(), rate = sample_rate / 100) input_matrix = sample_model.draw(truth_matrix) end manual_type_matrix = Array{Symbol}(undef, m, n) manual_type_matrix .= :Gaussian imputed, X, Y, tracker = complete(ChainedALM(), A = input_matrix, type_assignment = manual_type_matrix, block_size = Int64(500 * 500 / 10), rx = MatrixCompletion.LowRankModels.QuadReg(0), ry = MatrixCompletion.LowRankModels.QuadReg(0), target_rank = k, imputation_round = impute_round, initialX = init_X, initialY = init_Y, proximal_params = prox_params) return truth_matrix, imputed, X, Y, tracker end function run_one_shot_alm_randomized(;m = nothing, n = nothing, k = nothing, sample_rate = nothing, data = nothing, prox_params = nothing, sampled_data = nothing, init_X = nothing, init_Y = nothing) local truth_matrix, input_matrix if isnothing(data) truth_matrix = randn(m, k) * randn(k, n) else truth_matrix = data m, n = Base.size(data) end if isnothing(sample_rate) && !isnothing(sampled_data) input_matrix = sampled_data else sample_model = provide(Sampler{BernoulliModel}(), rate = sample_rate / 100) input_matrix = sample_model.draw(truth_matrix) end manual_type_matrix = Array{Symbol}(undef, m, n) manual_type_matrix .= :Gaussian imputed, X, Y, tracker = complete(OneShotALM(), A = input_matrix, type_assignment = manual_type_matrix, target_rank = k, initialX = init_X, initialY = init_Y, proximal_params = prox_params) return truth_matrix, imputed, X, Y, tracker end function get_diagnostic(A, A_imputed, X, Y, tracker) ret = Dict{Symbol, Any}() ret[:L2_total_error] = norm(A[tracker[:Missing][:Total]] - A_imputed[tracker[:Missing][:Total]]) ^ 2 ret[:L2_relative_error] = ret[:L2_total_error] / norm(A[tracker[:Missing][:Total]]) ^ 2 ret[:MissingEntries] = tracker[:Missing][:Total] ret[:Truth] = A ret[:Imputed] = Base.convert(Array{Float64, 2}, A_imputed) ret[:X] = X ret[:Y] = Y return ret end # @testset "$(format("Algorithm: OneShotALM[Randomized, Small]"))" begin # for i in 1:1 # @test get_diagnostic(run_one_shot_alm_randomized(m = 200, n = 200, k = 10, sample_rate = 80)...)[:L2_relative_error] < 0.05 # end # end # @testset "$(format("Algorithm: ChainedALM[Randomized, Small]"))" begin # for i in 1:1 # @test get_diagnostic(run_chained_alm_randomized(m = 200, n = 200, k = 10, sample_rate = 80)...)[:L2_relative_error] < 0.05 # end # end let Random.seed!(65536) m = 500 n = 500 for k in collect(10:10:500) for sample_rate in collect(10:1:99) RESULTS_DIR = GLOBAL_SIMULATION_RESULTS_DIR * "random_continuous/small_500x500/" * "rank" * string(k) * "/" * "sample" * string(sample_rate) * "/" DATA_FILE_NAME_ONESHOT = "oneshot_saved_variables.h5" DATA_FILE_PATH_ONESHOT = RESULTS_DIR * DATA_FILE_NAME_ONESHOT DATA_FILE_NAME_CHAINED = "chained_saved_variables.h5" DATA_FILE_PATH_CHAINED = RESULTS_DIR * DATA_FILE_NAME_CHAINED Base.Filesystem.mkpath(RESULTS_DIR) truth_matrix = randn(m, k) * randn(k, n) sample_rate = 80 sample_model = provide(Sampler{BernoulliModel}(), rate = sample_rate / 100) input_matrix = sample_model.draw(truth_matrix) initX = randn(k, m) initY = randn(k, n) param_oneshot = ProxGradParams(max_iter = 200) param_chained = ProxGradParams(max_iter = 200) result_oneshot_alm = get_diagnostic(run_one_shot_alm_randomized(data = deepcopy(truth_matrix), sampled_data = deepcopy(input_matrix), k = k, init_X = deepcopy(initX), init_Y = deepcopy(initY), prox_params = param_oneshot)...) result_chained_alm = get_diagnostic(run_chained_alm_randomized(data = deepcopy(truth_matrix), sampled_data = deepcopy(input_matrix), impute_round = 5, init_X = deepcopy(initX), init_Y = deepcopy(initY), k = k, prox_params = param_chained)...) pickle(DATA_FILE_PATH_ONESHOT, result_oneshot_alm) pickle(DATA_FILE_PATH_CHAINED, result_chained_alm) end end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
682
using MatrixCompletion.Utilities.BatchUtils @testset "$(format("BatchUtils: Tables Header"))" begin let tc = collect(1:100) batch = BatchFactory{SequentialScan}(size = 10) initialize(batch, tc) expected = [1:10, 11:20, 21:30, 31:40, 41:50, 51:60, 61:70, 71:80, 81:90, 91:100] ptr = 1 while has_next(batch) @test tc[next(batch)] == collect(expected[ptr]) ptr += 1 end end let tc = collect(1:100) batch = BatchFactory{SequentialScan}(size = 64) initialize(batch, tc) expected = [1:64, 65:100] ptr = 1 while has_next(batch) @test tc[next(batch)] == collect(expected[ptr]) ptr += 1 end end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
14186
@testset "$(format("Loss: Bernoulli[construction]"))" begin @test typeof(Loss{Bernoulli}(Bernoulli())) == Loss{Bernoulli} @test typeof(Loss(Bernoulli())) == Loss{Bernoulli} @test typeof(Loss(:Bernoulli)) == Loss{Bernoulli} end @testset "$(format("Optimizer: Bernoulli Loss [Small][Forgiving][AutoGrad]"))" begin @timeit to "Optimizer: Bernoulli Loss [Small][Forgiving][AutoGrad]" begin let is_admissible(result) = begin if result["relative-error[#within-radius(1e-5)]"] < 0.1 return true end @warn @sprintf("expected %f, got %f", 0.1, result["relative-error[#within-radius(1e-5)]"]) return false end @test !isnothing(provide(Loss(Bernoulli()))) @test !isnothing(provide(Loss(:Bernoulli))) @test is_admissible(unit_test_train_subloss(Bernoulli(),gradient_eval = provide(Loss(Bernoulli())), input_distribution = Distributions.Bernoulli(0.6), input_size = 1000, ρ = 0, step_size = 0.1, max_iter = 200)) @test is_admissible(unit_test_train_subloss(Bernoulli(),gradient_eval = provide(Loss(Bernoulli())), input_distribution = Distributions.Bernoulli(0.6), input_size = 3000, ρ = 0, step_size = 0.1, max_iter = 100)) @test is_admissible(unit_test_train_subloss(Bernoulli(),gradient_eval = provide(Loss(Bernoulli())), input_distribution = Distributions.Bernoulli(0.6), input_size = 5000, ρ = 0, step_size = 0.1, max_iter = 100)) @test is_admissible(unit_test_train_subloss(Bernoulli(),gradient_eval = provide(Loss(Bernoulli())), input_distribution = Distributions.Bernoulli(0.6), input_size = 1000, ρ = 0.1, step_size = 0.1, max_iter = 100)) @test is_admissible(unit_test_train_subloss(Bernoulli(),gradient_eval = provide(Loss(Bernoulli())), input_distribution = Distributions.Bernoulli(0.6), input_size = 3000, ρ = 0.1, step_size = 0.1, max_iter = 100)) @test is_admissible(unit_test_train_subloss(Bernoulli(),gradient_eval = provide(Loss(Bernoulli())), input_distribution = Distributions.Bernoulli(0.6), input_size = 5000, ρ = 0.2, step_size = 0.1, max_iter = 100)) @test is_admissible(unit_test_train_subloss(Bernoulli(),gradient_eval = provide(Loss(:Bernoulli)), input_distribution = Distributions.Bernoulli(0.6), input_size = 1000, ρ = 0, step_size = 0.1, max_iter = 100)) @test is_admissible(unit_test_train_subloss(Bernoulli(),gradient_eval = provide(Loss(:Bernoulli)), input_distribution = Distributions.Bernoulli(0.6), input_size = 3000, ρ = 0, step_size = 0.1, max_iter = 100)) @test is_admissible(unit_test_train_subloss(Bernoulli(),gradient_eval = provide(Loss(:Bernoulli)), input_distribution = Distributions.Bernoulli(0.6), input_size = 5000, ρ = 0, step_size = 0.1, max_iter = 100)) @test is_admissible(unit_test_train_subloss(Bernoulli(),gradient_eval = provide(Loss(:Bernoulli)), input_distribution = Distributions.Bernoulli(0.6), input_size = 1000, ρ = 0.1, step_size = 0.1, max_iter = 100)) @test is_admissible(unit_test_train_subloss(Bernoulli(),gradient_eval = provide(Loss(:Bernoulli)), input_distribution = Distributions.Bernoulli(0.6), input_size = 3000, ρ = 0.1, step_size = 0.1, max_iter = 100)) @test is_admissible(unit_test_train_subloss(Bernoulli(),gradient_eval = provide(Loss(:Bernoulli)), input_distribution = Distributions.Bernoulli(0.6), input_size = 5000, ρ = 0.2, step_size = 0.1, max_iter = 100)) end end end @testset "$(format("Optimizer: Bernoulli Loss [Small][Forgiving][Native]"))" begin @timeit to "Optimizer: Bernoulli Loss [Small][Forgiving][Native]" begin is_admissible(result) = begin if result["relative-error[#within-radius(1e-5)]"] < 0.1 return true end @warn @sprintf("expected %f, got %f",0.1,result["relative-error[#within-radius(1e-5)]"]) return false end @test is_admissible(unit_test_train_subloss(Bernoulli(),gradient_eval = Loss(Bernoulli()), input_distribution = Distributions.Bernoulli(0.6), input_size = 1000, ρ = 0, step_size = 0.1, max_iter = 100)) @test is_admissible(unit_test_train_subloss(Bernoulli(),gradient_eval = Loss(Bernoulli()), input_distribution = Distributions.Bernoulli(0.6), input_size = 3000, ρ = 0, step_size = 0.1, max_iter = 100)) @test is_admissible(unit_test_train_subloss(Bernoulli(),gradient_eval = Loss(Bernoulli()), input_distribution = Distributions.Bernoulli(0.6), input_size = 5000, ρ = 0, step_size = 0.1, max_iter = 100)) @test is_admissible(unit_test_train_subloss(Bernoulli(),gradient_eval = Loss(Bernoulli()), input_distribution = Distributions.Bernoulli(0.6), input_size = 1000, ρ = 0.2, step_size = 0.1, max_iter = 100)) @test is_admissible(unit_test_train_subloss(Bernoulli(),gradient_eval = Loss(Bernoulli()), input_distribution = Distributions.Bernoulli(0.6), input_size = 3000, ρ = 0.2, step_size = 0.1, max_iter = 100)) @test is_admissible(unit_test_train_subloss(Bernoulli(),gradient_eval = Loss(Bernoulli()), input_distribution = Distributions.Bernoulli(0.6), input_size = 5000, ρ = 0.2, step_size = 0.1, max_iter = 100)) @test is_admissible(unit_test_train_subloss(Bernoulli(),gradient_eval = Loss(:Bernoulli), input_distribution = Distributions.Bernoulli(0.6), input_size = 1000, ρ = 0, step_size = 0.1, max_iter = 100)) @test is_admissible(unit_test_train_subloss(Bernoulli(),gradient_eval = Loss(:Bernoulli), input_distribution = Distributions.Bernoulli(0.6), input_size = 3000, ρ = 0, step_size = 0.1, max_iter = 100)) @test is_admissible(unit_test_train_subloss(Bernoulli(),gradient_eval = Loss(:Bernoulli), input_distribution = Distributions.Bernoulli(0.6), input_size = 5000, ρ = 0, step_size = 0.1, max_iter = 100)) @test is_admissible(unit_test_train_subloss(Bernoulli(),gradient_eval = Loss(:Bernoulli), input_distribution = Distributions.Bernoulli(0.6), input_size = 1000, ρ = 0.2, step_size = 0.1, max_iter = 100)) @test is_admissible(unit_test_train_subloss(Bernoulli(),gradient_eval = Loss(:Bernoulli), input_distribution = Distributions.Bernoulli(0.6), input_size = 3000, ρ = 0.2, step_size = 0.1, max_iter = 100)) @test is_admissible(unit_test_train_subloss(Bernoulli(),gradient_eval = Loss(:Bernoulli), input_distribution = Distributions.Bernoulli(0.6), input_size = 5000, ρ = 0.2, step_size = 0.1, max_iter = 100)) end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
6191
import Distributions @testset "$(format("MGF: construction"))" begin let @test typeof(MGF{Poisson}(Poisson())) == MGF{Poisson} @test typeof(MGF{Poisson}(Poisson();logscale = true)) == MGF{Poisson} @test typeof(MGF(Poisson())) == MGF{Poisson} @test typeof(MGF(Poisson(),logscale=false)) == MGF{Poisson} @test typeof(MGF(:Poisson)) == MGF{Poisson} #@test_throws UnrecognizedSymbolException MGF(:POisson) # test argument with constructor let tc = MGF{Poisson}(Poisson(),logscale=true) @test typeof(tc) == MGF{Poisson} @test tc.OPTION_LOG_SCALE == true end let tc = MGF(Poisson(),logscale=true) @test typeof(tc) == MGF{Poisson} @test tc.OPTION_LOG_SCALE == true end let tc = MGF(:Poisson,logscale=true) @test typeof(tc) == MGF{Poisson} @test tc.OPTION_LOG_SCALE == true end end end @testset "$(format("SampleMGF: construction"))" begin let @test typeof(SampleMGF()) == SampleMGF end # test constuctor with argument let tc = SampleMGF(logscale = false) @test typeof(tc) == SampleMGF @test tc.OPTION_LOG_SCALE == false end end @testset "$(format("MGF: evaluation[Poisson]"))" begin let for i = 1:5 t = collect(1:0.05:1.5) tc_λ = rand() * 3 tc = evaluate(MGF(:Poisson),t,λ=tc_λ) compare = Distributions.mgf.(Distributions.Poisson(tc_λ),t) @test check(:l2diff,tc,compare) < 1e-2 tc_log = evaluate(MGF(:Poisson,logscale=true),t,λ=tc_λ) compare_log = log.(Distributions.mgf.(Distributions.Poisson(tc_λ),t)) @test check(:l2diff,tc_log,compare_log) < 1e-1 end end end @testset "$(format("MGF: evaluation[Gaussian]"))" begin let for i = 1:5 t = collect(1:0.05:1.5) tc_μ = rand() * 5 tc_σ = rand() * 5 tc = evaluate(MGF(:Gaussian),t;μ = tc_μ, σ = tc_σ) compare = Distributions.mgf.(Distributions.Gaussian(tc_μ,tc_σ),t) @test check(:l2diff,tc,compare) < 1e-2 tc_log = evaluate(MGF(:Gaussian,logscale=true),t;μ = tc_μ,σ = tc_σ) compare_log = log.(Distributions.mgf.(Distributions.Gaussian(tc_μ,tc_σ),t)) @test check(:l2diff,tc_log,compare_log) < 1e-2 end end end @testset "$(format("MGF: evaluation[Gamma]"))" begin let for i = 1:5 tc_α = rand() * 5 tc_θ = rand() * 5 # ensure support t = collect(0.01:0.05: (1/tc_θ)) tc = evaluate(MGF(:Gamma),t;α = tc_α, θ = tc_θ) compare = Distributions.mgf.(Distributions.Gamma(tc_α,tc_θ),t) @test check(:l2diff,tc,compare) < 1e-2 tc_log = evaluate(MGF(:Gamma,logscale=true),t;α = tc_α,θ = tc_θ) compare_log = log.(Distributions.mgf.(Distributions.Gamma(tc_α,tc_θ),t)) @test check(:l2diff,tc_log,compare_log) < 1e-2 end end end @testset "$(format("MGF: evaluation[Bernoulli]"))" begin let for i = 1:5 tc_p = rand() # ensure support t = collect(0.01:0.05: 0.5) tc = evaluate(MGF(:Bernoulli),t;p = tc_p) compare = Distributions.mgf.(Distributions.Bernoulli(tc_p),t) @test check(:l2diff,tc,compare) < 1e-2 tc_log = evaluate(MGF(:Bernoulli,logscale=true),t;p = tc_p) compare_log = log.(Distributions.mgf.(Distributions.Bernoulli(tc_p),t)) @test check(:l2diff,tc_log,compare_log) < 1e-2 end end end @testset "$(format("MGF: evaluation[NegativeBinomial]"))" begin let for i = 1:5 tc_p = rand() tc_r = rand() * 5 t = collect(0.01:0.05: -log(tc_p)) tc = evaluate(MGF(:NegativeBinomial),t; p = tc_p, r = tc_r) compare = Distributions.mgf.(Distributions.NegativeBinomial(tc_r,tc_p),t) @test check(:l2diff,tc,compare) < 1e-2 tc_log = evaluate(MGF(:NegativeBinomial,logscale=true),t;p = tc_p,r=tc_r) compare_log = log.(Distributions.mgf.(Distributions.NegativeBinomial(tc_r, tc_p),t)) @test check(:l2diff,tc_log,compare_log) < 1e-2 end end end @testset "$(format("SampleMGF: evaluation"))" begin # there is not way to make sure its correctness. we try to a few distributions # and show that as order increases the approximation gets more accurate. let total_passed = 0 for i = 1:1000 t = collect(0:0.0001:0.001) sample = rand(Distributions.Gamma(rand(1:100),rand(1:100)),5000) sample_mgf = evaluate(SampleMGF(),t,data = sample,order = 15) real_mgf = Distributions.mgf.(Distributions.fit_mle(Distributions.Gamma,sample) ,t) not_real_mgf = Distributions.mgf.(Distributions.fit_mle(Distributions.Normal,sample),t) if check(:l2diff,sample_mgf,real_mgf) < check(:l2diff,sample_mgf,not_real_mgf) total_passed = total_passed + 1 end end @test total_passed/1000 > 0.80 end let total_passed = 0 for i = 1:1000 t = collect(0:0.01:0.1) sample = rand(Distributions.Normal(rand(10:100),rand(1:10)),5000) sample_mgf = evaluate(SampleMGF(),t,data = sample,order = 15) real_mgf = Distributions.mgf.(Distributions.fit_mle(Distributions.Normal,sample) ,t) not_real_mgf = nothing try not_real_mgf = Distributions.mgf.(Distributions.fit_mle(Distributions.Gamma,sample),t) catch continue end if check(:l2diff,sample_mgf,real_mgf) < check(:l2diff,sample_mgf,not_real_mgf) total_passed = total_passed + 1 end end @test total_passed/1000 > 0.80 end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
7079
@testset "$(format("Chained ADMM: Bernoulli"))" begin let Random.seed!(65536) ROW = 500 COL = 500 for input_rank in collect(80:10:120) for input_sample in collect(50:5:90) try @show(Pair(input_rank, input_sample)) truth_matrix = rand([(FixedRankMatrix(Distributions.Bernoulli(0.5), rank = input_rank), ROW, COL)]) sample_model = provide(Sampler{BernoulliModel}(), rate = input_sample / 100) input_matrix = sample_model.draw(truth_matrix) manual_type_matrix = Array{Symbol}(undef, ROW, COL) manual_type_matrix .= :Bernoulli let RESULTS_DIR = GLOBAL_SIMULATION_RESULTS_DIR * "bernoulli/small(" * string(ROW) * "x" * string(COL) * ")" * "(vary_missing_200_iter_max)/" * "rank" * string(input_rank) * "/" * "sample" * string(input_sample) * "/oneshot/" LOG_FILE_NAME = "io.log" DATA_FILE_NAME = "saved_variables.h5" LOG_FILE_PATH = RESULTS_DIR * LOG_FILE_NAME DATA_FILE_PATH = RESULTS_DIR * DATA_FILE_NAME Base.Filesystem.mkpath(RESULTS_DIR) io = open(LOG_FILE_PATH, "w") completed_matrix, type_tracker, tracker, imputed = complete(OneShotADMM(), A = input_matrix, maxiter = 1000, ρ = 0.3, use_autodiff = false, gd_iter = 3, io = io, debug_mode = false, project_rank = nothing, type_assignment = manual_type_matrix) predicted_matrix = predict(MatrixCompletionModel(), completed_matrix = completed_matrix, type_tracker = type_tracker) summary_object = summary(MatrixCompletionModel(), predicted_matrix = predicted_matrix, truth_matrix = truth_matrix, type_tracker = type_tracker, tracker = tracker) pickle(DATA_FILE_PATH, "missing_idx" => type_tracker[:Missing], "completed_matrix" => completed_matrix, "predicted_matrix" => predicted_matrix, "truth_matrix" => truth_matrix, "summary" => summary_object) print(io, JSON.json(summary_object, 4)) close(io) end let RESULTS_DIR = GLOBAL_SIMULATION_RESULTS_DIR * "bernoulli/small(" * string(ROW) * "x" * string(COL) * ")" * "(vary_missing_200_iter_max)/" * "rank" * string(input_rank) * "/" * "sample" * string(input_sample) * "/chained/" LOG_FILE_NAME = "io.log" DATA_FILE_NAME = "saved_variables.h5" LOG_FILE_PATH = RESULTS_DIR * LOG_FILE_NAME DATA_FILE_PATH = RESULTS_DIR * DATA_FILE_NAME Base.Filesystem.mkpath(RESULTS_DIR) io = open(LOG_FILE_PATH, "w") completed_matrix, type_tracker, tracker, imputed = complete(ChainedADMM(), A = deepcopy(input_matrix), maxiter = 200, ρ = 0.3, use_autodiff = false, gd_iter = 3, imputation_round = 5, io = io, debug_mode = false, project_rank = nothing, type_assignment = deepcopy(manual_type_matrix)) predicted_matrix = predict(MatrixCompletionModel(), completed_matrix = completed_matrix, type_tracker = type_tracker) summary_object = summary(MatrixCompletionModel(), predicted_matrix = predicted_matrix, truth_matrix = truth_matrix, type_tracker = type_tracker, tracker = tracker) pickle(DATA_FILE_PATH, "missing_idx" => type_tracker[:Missing], "completed_matrix" => completed_matrix, "predicted_matrix" => predicted_matrix, "truth_matrix" => truth_matrix, "summary" => summary_object) print(io, JSON.json(summary_object, 4)) close(io) end catch # nothing @info("got exception not log") end end end end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
906
using MatrixCompletion import LinearAlgebra function unit_test_lpspace(p) tc = LpSpace(p) test_vec = rand(100) @test tc.p==p && tc.norm(test_vec) == LinearAlgebra.norm(test_vec,tc.p) end @testset "$(format("Concepts: LpSpace[Construction]"))" begin [unit_test_lpspace(i) for i in 1:10] end @testset "$(format("Concepts: Type Convertsion[Symbol->Exponential Family]"))" begin @test typeof(convert(ExponentialFamily,:Poisson)) == typeof(Poisson()) end @testset "$(format("Concepts: Comparator[construction]"))" begin @test typeof(Comparator{Int64}()) == Comparator{Int64} @test typeof(Comparator(MGF(:Gaussian))) == Comparator{MGF{Gaussian}} @test typeof(Comparator(MGF)) == Comparator{MGF} @test typeof(Comparator(:MGF)) == Comparator{MGF} let tc = Comparator{MGF}(MGF(),eval_at = [1,2,3]) @test tc.field[:eval_at] == [1,2,3] end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
6619
using MatrixCompletion import Distributions function unit_test_relative_error(metric,input,reference;base_metric = metric) @test abs( provide(RelativeError(),input,reference;metric = metric,base_metric=base_metric) - metric(input-reference)/base_metric(reference)) <1e-5 end function unit_test_absolute_error(metric,input,reference) @test abs(provide(AbsoluteError(),input,reference;metric=metric) - metric(input-reference)) <1e-5 end function unit_test_diagnostics(;input =nothing, reference = nothing) end @testset "$(format("Diagnostics: Absolute Error[LpMetric]"))" begin # test lp norm metric for arrays [unit_test_absolute_error(metric,rand(100),rand(100)) for metric in [x -> LinearAlgebra.norm(x,p) for p in 1:0.5:10]] # test lp norm metric for metrices [unit_test_relative_error(metric,rand(100,100),rand(100,100)) for metric in [x -> LinearAlgebra.norm(x,p) for p in 1:0.5:10]] # test within_radius metric for arrays end @testset "$(format("Diagnostics: Absolute Error[WithinRadius]"))" begin let for i = 1:10 tc = rand(100) .+ 1000 mask = rand(Distributions.Bernoulli(0.6),100) num_of_non_zeros = sum(mask) unit_test_absolute_error(x -> within_radius(x), mask,zeros(100)) unit_test_absolute_error(x -> within_radius(x), tc .* mask, tc) end end # test within_radius metric for matrices let for i = 1:10 tc = rand(100,100) .+ 1000 mask = rand(Distributions.Bernoulli(0.6),100,100) num_of_non_zeros = sum(mask) unit_test_absolute_error(x -> within_radius(x), mask,zeros(100,100)) unit_test_absolute_error(x -> within_radius(x), tc .* mask, tc) end end end @testset "$(format("Diagnostics: Relative Error[LpMetric]"))" begin # test lp norm metric for arrays [unit_test_relative_error(metric,rand(100),rand(100)) for metric in [x -> LinearAlgebra.norm(x,p) for p in 1:0.5:10]] # test lp norm metric for matrices [unit_test_relative_error(metric,rand(100,100),rand(100,100)) for metric in [x -> LinearAlgebra.norm(x,p) for p in 1:0.5:10]] end @testset "$(format("Diagnostics: Relative Error[WithinRadius]"))" begin # for arrays let for i = 1:10 tc = rand(100) .+ 1000 mask = rand(Distributions.Bernoulli(0.6),100) num_of_non_zeros = sum(mask) unit_test_relative_error(x -> within_radius(x), mask,zeros(100);base_metric = x -> LinearAlgebra.norm(mask,0)) unit_test_relative_error(x -> within_radius(x), tc .* mask, tc;base_metric = x -> LinearAlgebra.norm(mask,0)) end end # for matrices let for i = 1:10 tc = rand(100,100) .+ 1000 mask = rand(Distributions.Bernoulli(0.6),100,100) num_of_non_zeros = sum(mask) unit_test_relative_error(x -> within_radius(x), mask,zeros(100,100);base_metric = x -> LinearAlgebra.norm(mask,0)) unit_test_relative_error(x -> within_radius(x), tc .* mask, tc;base_metric = x -> LinearAlgebra.norm(mask,0)) end end end @testset "$(format("Diagnostics: Construction[For Arrays]"))" begin # test dispatcher @test isa(provide(Diagnostics{Gamma()}(),input_data = [1.1], reference = [1.1]),Dict) # test arg parser @test_throws DomainError provide(Diagnostics{Gamma()}()) # test for arrays let input_data = [1,1,2,1,0] * 1.0 reference = deepcopy(input_data) diagnostic = provide(Diagnostics{Gamma()}(), input_data = input_data,reference = reference); @test diagnostic["relative-error[#within-radius(1e-5)]"] == sum(Int.(abs.(input_data - reference) .> 1e-5))/length(input_data) @test diagnostic["absolute-error[#within-radius(1e-5)]"] == sum(Int.(abs.(input_data - reference) .> 1e-5)) @test diagnostic["relative-error[L1]"] == 0 @test diagnostic["relative-error[L2]"] == 0 @test diagnostic["absolute-error[L1]"] == 0 @test diagnostic["absolute-error[L2]"] == 0 @test LinearAlgebra.norm(diagnostic["error-matrix"] - [0,0,0,0,0],2) <1e-5 end let input_data = [1,1,3,1,0] * 1.0 reference = [1,0,1,0,0] * 1.0 diagnostic = provide(Diagnostics{Gamma()}(), input_data = input_data,reference = reference); @test diagnostic["relative-error[#within-radius(1e-5)]"] == 3/5 @test diagnostic["absolute-error[#within-radius(1e-5)]"] == 3 @test diagnostic["relative-error[L1]"] == 2 @test diagnostic["relative-error[L2]"] == sqrt(6) / sqrt(2) @test diagnostic["absolute-error[L1]"] == 4 @test diagnostic["absolute-error[L2]"] == sqrt(6) @test LinearAlgebra.norm(diagnostic["error-matrix"] - [0,1,2,1,0],2) <1e-5 end end @testset "$(format("Diagnostics: Construction[For Matrices]"))" begin # test dispatcher @test isa(provide(Diagnostics{Gamma()}(),input_data = ones(2,2), reference = ones(2,2)),Dict) # zeros let input_data = rand(10,10) reference = deepcopy(input_data) diagnostic = provide(Diagnostics{Gamma()}(), input_data = input_data, reference = reference); @test diagnostic["relative-error[#within-radius(1e-5)]"] == 0 @test diagnostic["absolute-error[#within-radius(1e-5)]"] == 0 @test diagnostic["relative-error[L1]"] == 0 @test diagnostic["relative-error[L2]"] == 0 @test diagnostic["absolute-error[L1]"] == 0 @test diagnostic["absolute-error[L2]"] == 0 @test LinearAlgebra.norm(diagnostic["error-matrix"] - zeros(10,10) ,2) <1e-5 end # given test let input_data = [1 0 2; 0 2 0; 0 0 1] reference = [1 0 0; 0 0 1; 0 0 1] diagnostic = provide(Diagnostics{Gamma()}(), input_data = input_data,reference = reference); @test diagnostic["relative-error[#within-radius(1e-5)]"] == 3/9 @test diagnostic["absolute-error[#within-radius(1e-5)]"] == 3 @test diagnostic["relative-error[L1]"] == 5 /3 @test diagnostic["relative-error[L2]"] == 3/sqrt(3) @test diagnostic["absolute-error[L1]"] == 5 @test diagnostic["absolute-error[L2]"] == 3 @test LinearAlgebra.norm(diagnostic["error-matrix"] - [0 0 2;0 2 1;0 0 0],2) <1e-5 end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
1619
import Distributions using MatrixCompletion @testset "$(format("Estimator: MLE[construction]"))" begin @test typeof(MLE{Gaussian}()) == MLE{Gaussian} @test typeof(MLE(Gaussian())) == MLE{Gaussian} @test typeof(MLE(:Gaussian)) == MLE{Gaussian} end @testset "$(format("Estimator: MLE[Gaussian]"))" begin for i = 1:10 input_σ = rand() * 10 input_μ = rand() * 10 tc = rand(Distributions.Gaussian(input_μ,input_σ),1000) out_1 = Distributions.fit_mle(Distributions.Gaussian,tc) out_2 = estimator(MLE{Gaussian}(),tc) @test out_1.μ == out_2[:μ] && out_1.σ == out_2[:σ] end end @testset "$(format("Estimator: MLE[Gamma]"))" begin for i = 1:10 input_α = rand() * 10 input_θ = rand() * 10 tc = rand(Distributions.Gamma(input_α,input_θ),10000) out_1 = Distributions.fit_mle(Distributions.Gamma,tc) out_2 = estimator(MLE{Gamma}(),tc) @test out_1.α == out_2[:α] && out_1.θ == out_2[:θ] end end @testset "$(format("Estimator: MLE[Poisson]"))" begin for i = 1:10 input_λ = rand() * 10 tc = rand(Distributions.Poisson(input_λ),10000) out_1 = sum(tc) / length(tc) out_2 = estimator(MLE{Poisson}(),tc) @test check(:l2diff,out_1,out_2[:λ]) < 0.5 end end @testset "$(format("Estimator: MLE[Bernoulli]"))" begin for i = 1:10 input_p = rand() tc = rand(Distributions.Bernoulli(input_p),10000) out_1 = sum(tc) / length(tc) out_2 = estimator(MLE{Bernoulli}(),tc) @test check(:l2diff,out_1,out_2[:p]) < 0.5 end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
430
using MatrixCompletion import Distributions @testset "$(format("Estimator: MOM[NegativeBinomial]]"))" begin let for i in 1:10 p_test = rand() r_test = rand() * 20 data = rand(Distributions.NegativeBinomial(r_test, p_test), 1000 * 200) tc = estimator(MOM{NegativeBinomial}(), data) @test abs(tc[:p] - p_test) / p_test < 0.05 @test abs(tc[:r] - r_test) / r_test < 0.05 end end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
4690
using MatrixCompletion @testset "$(format("Exponential Family: forward_map[poisson]"))" begin let tc1 = rand(100) @test check(:l2diff, forward_map(Poisson(),tc1),exp.(tc1),0) @test check(:l2diff, forward_map(:Poisson,tc1),exp.(tc1),0) tc2 = rand(100,100) @test check(:l2diff, forward_map(Poisson(),tc2),exp.(tc2),0) @test check(:l2diff, forward_map(:Poisson,tc2),exp.(tc2),0) end end @testset "$(format("Exponential Family: forward_map[gamma]"))" begin let tc1 = rand(100) @test check(:l2diff, forward_map(Gamma(),tc1),1 ./ tc1,0) @test check(:l2diff, forward_map(:Gamma,tc1),1 ./ tc1,0) tc2 = rand(100,100) @test check(:l2diff, forward_map(Gamma(),tc2),1 ./ tc2,0) @test check(:l2diff, forward_map(:Gamma,tc2),1 ./ tc2,0) end end @testset "$(format("Exponential Family: forward_map[gaussian]"))" begin let tc1 = rand(100) @test check(:l2diff, forward_map(Gaussian(),tc1),tc1,0) @test check(:l2diff, forward_map(:Gaussian,tc1), tc1,0) tc2 = rand(100,100) @test check(:l2diff, forward_map(Gaussian(),tc2),tc2,0) @test check(:l2diff, forward_map(:Gaussian,tc2),tc2,0) end end @testset "$(format("Exponential Family: forward_map[bernoulli]"))" begin let logit = (x) -> log.(x./(1 .- x)) tc1 = rand(100) tc1_logit = logit(tc1) @test check(:l2diff, forward_map(Bernoulli(),tc1_logit),tc1,0) @test check(:l2diff, forward_map(:Bernoulli,tc1_logit), tc1,0) tc2 = rand(100,100) tc2_logit = logit(tc2) @test check(:l2diff, forward_map(Bernoulli(),tc2_logit),tc2,0) @test check(:l2diff, forward_map(:Bernoulli,tc2_logit), tc2,0) end end @testset "$(format("Exponential Family: predict[poisson]"))" begin let tc1 = rand(2:20,100) log_tc1 = log.(tc1) @test check(:l2diff, predict(Poisson(),forward_map(Poisson(),log_tc1)),tc1,0.0) @test check(:l2diff, predict(:Poisson,forward_map(:Poisson,log_tc1)),tc1,0.0) @test predict(:Poisson,[1,1];custom_prediction_function=1) == -1 # tc2 = rand(2:20,100,100) log_tc2 = log.(tc2) @test check(:l2diff, predict(Poisson(),forward_map(Poisson(),log_tc2)),tc2,0.0) @test check(:l2diff, predict(:Poisson,forward_map(:Poisson,log_tc2)),tc2,0.0) @test predict(:Poisson,[1 1;1 1];custom_prediction_function=1) == -1 # end end @testset "$(format("Exponential Family: predict[bernoulli]"))" begin let logit = (x) -> log.(x./(1 .- x)) tc1 = rand(100) tc1_int = Int.(tc1 .> 0.5) logit_tc1 = logit(tc1) @test check(:l2diff, predict(Bernoulli(), forward_map(Bernoulli(),logit_tc1)), tc1_int, 0.0) @test check(:l2diff, predict(:Bernoulli, forward_map(:Bernoulli, logit_tc1)), tc1_int, 0.0) @test predict(:Bernoulli,[1,1];custom_prediction_function=1) == -1 # tc2 = rand(100,100) tc2_int = Int.(tc2 .> 0.5) logit_tc2 = logit(tc2) @test check(:l2diff, predict(Bernoulli(),forward_map(Bernoulli(),logit_tc2)),tc2_int,0.0) @test check(:l2diff, predict(:Bernoulli,forward_map(:Bernoulli,logit_tc2)),tc2_int,0.0) @test predict(:Bernoulli,[1 1;1 1];custom_prediction_function=1) == -1 # end end @testset "$(format("Exponential Family: predict[gaussian]"))" begin let tc1 = rand(100) @test check(:l2diff, predict(Gaussian(),forward_map(Gaussian(),tc1)),tc1,0.0) @test check(:l2diff, predict(:Gaussian,forward_map(:Gaussian,tc1)),tc1,0.0) @test predict(:Gaussian,[1,1];custom_prediction_function=1) == -1 # tc2 = rand(100,100) @test check(:l2diff, predict(Gaussian(),forward_map(Gaussian(),tc2)),tc2,0.0) @test check(:l2diff, predict(:Gaussian,forward_map(:Gaussian,tc2)),tc2,0.0) @test predict(:Poisson,[1 1;1 1];custom_prediction_function=1) == -1 # end end @testset "$(format("Exponential Family: predict[gaussian]"))" begin let tc1 = rand(100) inv_tc1 = 1 ./ tc1 @test check(:l2diff, predict(Gamma(),forward_map(Gamma(),1 ./ tc1)),tc1,0.0) @test check(:l2diff, predict(:Gamma,forward_map(:Gamma,1 ./ tc1)),tc1,0.0) @test predict(:Gamma,[1,1];custom_prediction_function=1) == -1 # tc2 = rand(100,100) inv_tc2 = 1 ./ tc2 @test check(:l2diff, predict(Gamma(),forward_map(Gamma(),inv_tc2)),tc2,0.0) @test check(:l2diff, predict(:Gamma,forward_map(:Gamma,inv_tc2)),tc2,0.0) @test predict(:Poisson,[1 1;1 1];custom_prediction_function=1) == -1 # end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
7465
@testset "$(format("Loss: Gamma[construction]"))" begin @test typeof(Loss{Gamma}(Gamma())) == Loss{Gamma} @test typeof(Loss(Gamma())) == Loss{Gamma} @test typeof(Loss(:Gamma)) == Loss{Gamma} end @testset "$(format("Optimizer: Gamma Loss [Small][Forgiving][Native][]"))" begin @timeit to "Optimizer: Gamma Loss [Small][Forgiving][Native]" begin let is_admissible(result) = begin if result["relative-error[L2]"] < 1000 return true end @warn @sprintf("expected %f, got %f",0.1,result["relative-error[L2]"]) return false end @test !isnothing(Loss(Gamma())) @test !isnothing(provide(Loss(:Gamma))) @test is_admissible(unit_test_train_subloss(Gamma(),gradient_eval = Loss(Gamma()), input_distribution = Distributions.Gamma(5,0.5), input_size = 1000, ρ = 0, step_size = 0.005, max_iter = 200)) @test is_admissible(unit_test_train_subloss(Gamma(),gradient_eval = Loss(Gamma()), input_distribution = Distributions.Gamma(5,0.5), input_size = 3000, ρ = 0, step_size = 0.005, max_iter = 200)) @test is_admissible(unit_test_train_subloss(Gamma(),gradient_eval = Loss(Gamma()), input_distribution = Distributions.Gamma(5,0.5), input_size = 5000, ρ = 0, step_size = 0.005, max_iter = 200)) @test is_admissible(unit_test_train_subloss(Gamma(),gradient_eval = Loss(Gamma()), input_distribution = Distributions.Gamma(5,0.5), input_size = 1000, ρ = 0.1, step_size = 0.005, max_iter = 200)) @test is_admissible(unit_test_train_subloss(Gamma(),gradient_eval = Loss(Gamma()), input_distribution = Distributions.Gamma(5,0.5), input_size = 3000, ρ = 0.1, step_size = 0.005, max_iter = 200)) @test is_admissible(unit_test_train_subloss(Gamma(),gradient_eval = Loss(Gamma()) , input_distribution = Distributions.Gamma(5,0.5), input_size = 5000, ρ = 0.2, step_size = 0.005, max_iter = 100)) @test is_admissible(unit_test_train_subloss(Gamma(),gradient_eval = Loss(:Gamma), input_distribution = Distributions.Gamma(5,0.5), input_size = 1000, ρ = 0, step_size = 0.005, max_iter = 200)) @test is_admissible(unit_test_train_subloss(Gamma(),gradient_eval = Loss(:Gamma), input_distribution = Distributions.Gamma(5,0.5), input_size = 3000, ρ = 0, step_size = 0.005, max_iter = 200)) @test is_admissible(unit_test_train_subloss(Gamma(),gradient_eval = Loss(:Gamma), input_distribution = Distributions.Gamma(5,0.5), input_size = 5000, ρ = 0, step_size = 0.005, max_iter = 200)) @test is_admissible(unit_test_train_subloss(Gamma(),gradient_eval = Loss(:Gamma), input_distribution = Distributions.Gamma(5,0.5), input_size = 1000, ρ = 0.1, step_size = 0.005, max_iter = 200)) @test is_admissible(unit_test_train_subloss(Gamma(),gradient_eval = Loss(:Gamma), input_distribution = Distributions.Gamma(5,0.5), input_size = 3000, ρ = 0.1, step_size =0.005, max_iter = 200)) @test is_admissible(unit_test_train_subloss(Gamma(),gradient_eval = Loss(:Gamma), input_distribution = Distributions.Gamma(5,0.5), input_size = 5000, ρ = 0.2, step_size = 0.005, max_iter = 200)) end end end @warn "Autograd version of the gamma case is yet to be implemented due to numerical instability (forward pass goes into complex domain...)"
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
3399
using MatrixCompletion @testset "$(format("Tracker: IndexTracker[convert]"))" begin let data = [1, 2, 3, 4] tc = convert(Array{<:CartesianIndex}, data) @test typeof(tc) == Array{CartesianIndex{1}, 1} end let data = rand(5, 5) tc = convert(Array{<:CartesianIndex}, findall(x -> x < 0.5 , data)) @test typeof(tc) == Array{CartesianIndex{2}, 1} end end @testset "$(format("Tracker: IndexTracker[data stream initialization]"))" begin let data1 = [:Gaussian :Bernoulli; :Gaussian :Bernoulli] data2 = [:Observed :Observed; :Missing :Missing] tc = IndexTracker{Symbol}(data1, data2) end let data1 = [:Gaussian :Bernoulli; :Gaussian :Bernoulli] data2 = [:Observed :Observed :Observed; :Missing :Missing :Missing] @test_throws DimensionMismatch tc = IndexTracker{Symbol}(data1, data2) end end @testset "$(format("Tracker: IndexTracker[disjoint join]"))" begin let tc = IndexTracker{Symbol}([:a, :b]) @test_throws DimensionMismatch disjoint_join(tc, [:a]) @test_throws MethodError disjoint_join(tc, [:a, :c]) end let tc = IndexTracker{Symbol}([:a :b; :c :d]) end end @testset "$(format("Tracker: IndexTracker[getindex]"))" begin let data = [:a,:b] tc = IndexTracker{Symbol}(data) @test data[tc[:a]] == data[findall(x -> x == :a, data)] end let data = [:a :b; :c :d] tc = IndexTracker{Symbol}(data) @test data[tc[:a]] == data[findall(x -> x == :a, data)] @test data[tc[:b]] == data[findall(x -> x == :b, data)] @test data[tc[:c]] == data[findall(x -> x == :c, data)] @test data[tc[:d]] == data[findall(x -> x == :d, data)] end end @testset "$(format("Tracker: IndexTracker[symbol]"))" begin let tc1 = IndexTracker{Symbol}([:a, :b]) @test typeof(tc1) == IndexTracker{Symbol} @test size(tc1) == (2, ) @test tc1.dimension == (2, ) end end @testset "$(format("Tracker: IndexTracker[groupby]"))" begin let data = Array{Symbol}(undef, 20, 20) data[:, 1:10] .= :Gaussian data[:, 11:20] .= :Binomial data2 = Array{Symbol}(undef, 20, 20) data2[:, 1:5] .= :Observed data2[:, 10:15] .= :Observed data2[:, 6:10] .= :Missing data2[:, 16:20] .= :Missing tc = IndexTracker{Symbol}(data) # @show(size(Iterators.flatten(data[:, 1:10]))) @test tc[:Gaussian] == findall(x -> x == :Gaussian, data) @test tc[:Binomial] == findall(x -> x == :Binomial, data) disjoint_join(tc, data2) @test tc[:Observed] == findall(x -> x == :Observed, data2) @test tc[:Missing] == findall(x -> x == :Missing, data2) tc2 = groupby(tc, [:Observed, :Missing]) @test tc2[:Gaussian][:Observed] == intersect(findall(x -> x == :Gaussian, data), findall(x -> x == :Observed, data2)) @test tc2[:Gaussian][:Missing] == intersect(findall(x -> x == :Gaussian, data), findall(x -> x == :Missing, data2)) @test tc2[:Binomial][:Observed] == intersect(findall(x -> x == :Binomial, data), findall(x -> x == :Observed, data2)) @test tc2[:Binomial][:Missing] == intersect(findall(x -> x == :Binomial, data), findall(x -> x == :Missing, data2)) end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
841
using MatrixCompletion.MathLib import LinearAlgebra function create_symmetric_matrix(n) a = rand(n,n)*5 return a+a' end function correct_output_sparseeigen(input,k) eigen_dcp = LinearAlgebra.eigen(input); eigen_val = eigen_dcp.values; eigen_vec = eigen_dcp.vectors; first_k_idx = Base.sortperm(eigen_val,rev=true)[1:k]; return eigen_val[first_k_idx],eigen_vec[:,first_k_idx]; end @testset "$(format("Math Library: Projection[SemidefiniteCone]"))" begin let for i in 1:50 data = create_symmetric_matrix(100) rk = rand(2:30) tc = project(SemidefiniteCone(rank = rk), data) λ0, X0 = correct_output_sparseeigen(data, rk) tc_comp = X0 * LinearAlgebra.Diagonal(λ0) * X0' @test LinearAlgebra.norm(tc_comp - tc)^2 / LinearAlgebra.norm(tc_comp) ^ 2 < 0.02 end end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
2186
import LinearAlgebra @testset "$(format("Misc: check[:rank]"))" begin let tc = ones(5,5) @test check(Val{:rank},tc,1) @test check(:rank,tc,1) @test check(:rank,tc) == 1 @test check(:rank,tc,2) == false end end @testset "$(format("Misc: check[:dimension]"))" begin let tc = rand(5,5) @test check(:dimension,tc) == (5,5) @test check(:dimension,tc,(5,5)) == true @test check(:dimension,tc,(4,5)) == false end end @testset "$(format("Misc: check[:l2difference]"))" begin # number case let for i = 1:5 tc_a = rand() * 10 tc_b = rand() * 10 @test abs(check(:l2difference,tc_a,tc_b) - LinearAlgebra.norm(tc_a-tc_b,2)) < 1e-5 @test check(:l2difference,tc_a,tc_b,LinearAlgebra.norm(tc_a-tc_b,2)) @test abs(check(:l2diff,tc_a,tc_b) - LinearAlgebra.norm(tc_a-tc_b,2)) < 1e-5 @test check(:l2diff,tc_a,tc_b,LinearAlgebra.norm(tc_a-tc_b,2)) end end # vector case let for i = 1:5 tc_a = rand(10) .* 10 tc_b = rand(10) .* 10 @test abs(check(:l2difference,tc_a,tc_b) - LinearAlgebra.norm(tc_a-tc_b,2)) < 1e-5 @test check(:l2difference,tc_a,tc_b,LinearAlgebra.norm(tc_a-tc_b,2)) @test abs(check(:l2diff,tc_a,tc_b) - LinearAlgebra.norm(tc_a-tc_b,2)) < 1e-5 @test check(:l2diff,tc_a,tc_b,LinearAlgebra.norm(tc_a-tc_b,2)) end end # matrix case let for i = 1:5 tc_a = rand(10,10) .* 10 tc_b = rand(10,10) .* 10 @test abs(check(:l2difference,tc_a,tc_b) - LinearAlgebra.norm(tc_a-tc_b,2)) < 1e-5 @test check(:l2difference,tc_a,tc_b,LinearAlgebra.norm(tc_a-tc_b,2)) @test abs(check(:l2diff,tc_a,tc_b) - LinearAlgebra.norm(tc_a-tc_b,2)) < 1e-5 @test check(:l2diff,tc_a,tc_b,LinearAlgebra.norm(tc_a-tc_b,2)) end end end @testset "$(format("Misc: zeros"))" begin let # matrix case tc = rand(100,100) @test check(:l2diff,zeros(tc),zeros(100,100)) < 1e-3 end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
5784
import Distributions # @testset "$(format("Model Fitting: choose[Gaussian v.s. Poisson]"))" begin # let # total_passed = 0 # for i = 1:1000 # sample = rand(Distributions.Gamma(rand(1:100),rand(1:100)),5000) # if choose(Gaussian(),Gamma(),data=sample) == :Gamma # total_passed = total_passed + 1 # end # end # @test total_passed/1000.0 > 0.9 # @info @sprintf("[Success rate][Gamma[α∈(1,100),θ∈(1,100)](true) v.s. Gaussian]: %f\n",total_passed/1000.0) # end # let # total_passed = 0 # for i = 1:1000 # sample = rand(Distributions.Gamma(rand(1:10),rand(1:10)),5000) # if choose(Gaussian(),Gamma(),data=sample, # comp=Comparator{MGF}(MGF(),eval_at = collect(0.01:0.001:0.02))) == :Gamma # total_passed = total_passed + 1 # end # end # @test total_passed/1000 > 0.9 # @info @sprintf("[Success rate][Gamma[α∈(1,10),θ∈(1,10)](true) v.s. Gaussian]: %f\n",total_passed/1000.0) # end # let # total_passed = 0 # for i = 1:1000 # sample = rand(Distributions.Gamma(rand(1:10),rand(1:10)),5000) # if choose(Gaussian(),Gamma(),data=sample, # comp=Comparator{MGF}(MGF())) == :Gamma # total_passed = total_passed + 1 # end # end # @test total_passed/1000 > 0.9 # @info @sprintf("[Success rate][Gamma[α∈(1,10),θ∈(1,10)](true) v.s. Gaussian]: %f\n",total_passed/1000.0) # end # let # total_passed = 0 # for i = 1:1000 # sample = rand(Distributions.Gamma(rand(1:100),rand(1:100)),5000) # if choose(Gaussian(),Gamma(),data=sample, # comp=Comparator{MGF}(MGF())) == :Gamma # total_passed = total_passed + 1 # end # end # @test total_passed/1000 > 0.9 # @info @sprintf("[Success rate][Gamma[α∈(1,100),θ∈(1,100)](true) v.s. Gaussian]: %f\n",total_passed/1000.0) # end # let # total_passed = 0 # for i = 1:1000 # sample = rand(Distributions.Gaussian(rand(50:100),rand(1:5)),5000) # if choose(Gaussian(),Gamma(),data=sample, # comp=Comparator{MGF}(MGF())) == :Gaussian # total_passed = total_passed + 1 # end # end # @test total_passed/1000 > 0.9 # @info @sprintf("[Success rate][Gamma[α∈(1,100),θ∈(1,100)] v.s. Gaussian(true)]: %f\n",total_passed/1000.0) # end # end @testset "$(format("Model Fitting: check[continuous/integral]"))" begin # test the continuous case [let tc1 = rand(100) * 100 @test check(:continuous,tc1) == true @test check(:integral,tc1) == false tc2 = rand(100,100) * 100 @test check(:continuous,tc2) == true @test check(:integral,tc2) == false end for i = 1:5] # test the integral case [let tc1 = rand(1:10,100) @test check(:continuous,tc1) == false @test check(:integral,tc1) == true tc2 = rand(1:10,100,100) @test check(:continuous,tc2) == false @test check(:integral,tc2) == true end for i = 1:5] end @testset "$(format("Model Fitting: check[Bernoulli]"))" begin [let tc1 = rand(0:1,100) @test check(:Bernoulli,tc1) == true @test check(:Bernoulli,tc1 .* 1.0) == true @test check(:Bernoulli,tc1 .* 1.5) == false tc2 = rand(0:1,100,100) @test check(:Bernoulli,tc2) == true @test check(:Bernoulli,tc2 .* 1.0) == true @test check(:Bernoulli,tc2 .* 1.5) == false end for i = 1:5] end @testset "$(format("Model Fitting: check[Poisson/NB]"))" begin let tc1 = rand(Distributions.Poisson(10),100) @test choose(:Poisson,:NegativeBinomial;data = tc1) == :Poisson @test choose(Poisson,NegativeBinomial;data=tc1) == :Poisson @test choose(Poisson(),NegativeBinomial();data = tc1) == :Poisson end end @testset "$(format("Model Fitting: check[support]"))" begin let tc = collect(1:10) @test check(:support,tc,layout=:flatten) == (1,10) @test check(:support,collect(-5:5),layout=:flatten) == (-5,5) end end @testset "$(format("Model Fitting: check[Gamma/Gaussian]"))" begin [let tc_vec = rand(Distributions.Gaussian(rand()*100,rand()*10),10000) @test choose(Gaussian,Gamma,data= tc_vec) == :Gaussian @test choose(Gaussian(),Gamma(),data= tc_vec) == :Gaussian @test choose(:Gaussian,:Gamma,data= tc_vec) == :Gaussian tc_mat = rand(Distributions.Gaussian(rand()*100,rand()*10),1000,1000) @test choose(Gaussian,Gamma,data= tc_mat) == :Gaussian @test choose(Gaussian(),Gamma(),data= tc_mat) == :Gaussian @test choose(:Gaussian,:Gamma,data= tc_mat) == :Gaussian end for i =1:5] [let tc_vec = rand(Distributions.Gamma(rand()*10,rand()*10),10000) @test choose(Gaussian,Gamma,data= tc_vec) == :Gamma @test choose(Gaussian(),Gamma(),data= tc_vec) == :Gamma @test choose(:Gaussian,:Gamma,data= tc_vec) == :Gamma tc_mat = rand(Distributions.Gamma(rand()*10,rand()*10),1000,1000) @test choose(Gaussian,Gamma,data= tc_mat) == :Gamma @test choose(Gaussian(),Gamma(),data= tc_mat) == :Gamma @test choose(:Gaussian,:Gamma,data= tc_mat) == :Gamma tc_mat = rand(Distributions.Gamma(rand()*100,rand()*100),1000,1000) @test choose(Gaussian,Gamma,data= tc_mat) == :Gamma @test choose(Gaussian(),Gamma(),data= tc_mat) == :Gamma @test choose(:Gaussian,:Gamma,data= tc_mat) == :Gamma end for i=1:5] end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
1111
using MatrixCompletion import Distributions @testset "$(format("GD Optimizer: Negative Binomial Loss [Small][Forgiving][Native]"))" begin let input_size = 1600*400 y = rand(Distributions.NegativeBinomial(10, 0.6), input_size) * 1.0 mle_x = MatrixCompletion.Losses.negative_binomial_train(fx = rand(input_size), y = y, c = zeros(input_size), ρ = 0, γ = 0.2, iter = 200, verbose = true, r_estimate = 10) @show(mle_x[1:20]) prediction = predict(NegativeBinomial(),forward_map(NegativeBinomial(),mle_x,r_estimate=10)) tc = provide(Diagnostics{Poisson()}(), input_data=prediction, reference=y) display(tc) end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
13924
@testset "$(format("Loss: Poisson[construction]"))" begin @test typeof(Loss{Poisson}(Poisson())) == Loss{Poisson} @test typeof(Loss(Poisson())) == Loss{Poisson} @test typeof(Loss(:Poisson)) == Loss{Poisson} end @testset "$(format("Optimizer: Poisson Loss [Small][Forgiving][AutoGrad]"))" begin @timeit to "Optimizer: Poisson Loss [Small][Forgiving][AutoGrad]" begin let is_admissable(result) = begin if result["relative-error[#within-radius(1e-5)]"] < 0.1 || result["relative-error[#within-radius(1)]"] <0.1 return true end @warn @sprintf("expected %f, got %f",0.1,result["relative-error[#within-radius(1e-5)]"]) return false end @test !isnothing(provide(Loss(Poisson()))) @test !isnothing(provide(Loss(:Poisson))) @test is_admissable(unit_test_train_subloss(gradient_eval = provide(Loss(Poisson())), input_distribution = Distributions.Poisson(5), input_size = 1000, ρ = 0, step_size = 0.1, max_iter = 100)) @test is_admissable(unit_test_train_subloss(gradient_eval = provide(Loss(Poisson())), input_distribution = Distributions.Poisson(5), input_size = 3000, ρ = 0, step_size = 0.1, max_iter = 100)) @test is_admissable(unit_test_train_subloss(gradient_eval = provide(Loss(Poisson())), input_distribution = Distributions.Poisson(5), input_size = 5000, ρ = 0, step_size = 0.1, max_iter = 100)) @test is_admissable(unit_test_train_subloss(gradient_eval = provide(Loss(Poisson())), input_distribution = Distributions.Poisson(5), input_size = 1000, ρ = 0.1, step_size = 0.1, max_iter = 100)) @test is_admissable(unit_test_train_subloss(gradient_eval = provide(Loss(Poisson())), input_distribution = Distributions.Poisson(5), input_size = 3000, ρ = 0.1, step_size = 0.1, max_iter = 100)) @test is_admissable(unit_test_train_subloss(gradient_eval = provide(Loss(Poisson())), input_distribution = Distributions.Poisson(5), input_size = 5000, ρ = 0.2, step_size = 0.1, max_iter = 100)) @test is_admissable(unit_test_train_subloss(gradient_eval = provide(Loss(:Poisson)), input_distribution = Distributions.Poisson(5), input_size = 1000, ρ = 0, step_size = 0.1, max_iter = 100)) @test is_admissable(unit_test_train_subloss(gradient_eval = provide(Loss(:Poisson)), input_distribution = Distributions.Poisson(5), input_size = 3000, ρ = 0, step_size = 0.1, max_iter = 100)) @test is_admissable(unit_test_train_subloss(gradient_eval = provide(Loss(:Poisson)), input_distribution = Distributions.Poisson(5), input_size = 5000, ρ = 0, step_size = 0.1, max_iter = 100)) @test is_admissable(unit_test_train_subloss(gradient_eval = provide(Loss(:Poisson)), input_distribution = Distributions.Poisson(5), input_size = 1000, ρ = 0.1, step_size = 0.1, max_iter = 100)) @test is_admissable(unit_test_train_subloss(gradient_eval = provide(Loss(:Poisson)), input_distribution = Distributions.Poisson(5), input_size = 3000, ρ = 0.1, step_size = 0.1, max_iter = 100)) @test is_admissable(unit_test_train_subloss(gradient_eval = provide(Loss(:Poisson)), input_distribution = Distributions.Poisson(5), input_size = 5000, ρ = 0.2, step_size = 0.1, max_iter = 100)) end end end @testset "$(format("Optimizer: Poisson Loss [Small][Forgiving][Native]"))" begin @timeit to "Optimizer: Poisson Loss [Small][Forgiving][Native]" begin is_admissable(result) = begin if result["relative-error[#within-radius(1e-5)]"] < 0.1 || result["relative-error[#within-radius(1)]"] <0.1 return true end @warn @sprintf("expected %f, got %f",0.1,result["relative-error[#within-radius(1e-5)]"]) return false end @test is_admissable(unit_test_train_subloss(gradient_eval = Loss(Poisson()), input_distribution = Distributions.Poisson(5), input_size = 1000, ρ = 0, step_size = 0.1, max_iter = 100)) @test is_admissable(unit_test_train_subloss(gradient_eval = Loss(Poisson()), input_distribution = Distributions.Poisson(5), input_size = 3000, ρ = 0, step_size = 0.1, max_iter = 100)) @test is_admissable(unit_test_train_subloss(gradient_eval = Loss(Poisson()), input_distribution = Distributions.Poisson(5), input_size = 5000, ρ = 0, step_size = 0.1, max_iter = 100)) @test is_admissable(unit_test_train_subloss(gradient_eval = Loss(Poisson()), input_distribution = Distributions.Poisson(5), input_size = 1000, ρ = 0.2, step_size = 0.1, max_iter = 100)) @test is_admissable(unit_test_train_subloss(gradient_eval = Loss(Poisson()), input_distribution = Distributions.Poisson(5), input_size = 3000, ρ = 0.2, step_size = 0.1, max_iter = 100)) @test is_admissable(unit_test_train_subloss(gradient_eval = Loss(Poisson()), input_distribution = Distributions.Poisson(5), input_size = 5000, ρ = 0.2, step_size = 0.1, max_iter = 100)) @test is_admissable(unit_test_train_subloss(gradient_eval = Loss(:Poisson), input_distribution = Distributions.Poisson(5), input_size = 1000, ρ = 0, step_size = 0.1, max_iter = 100)) @test is_admissable(unit_test_train_subloss(gradient_eval = Loss(:Poisson), input_distribution = Distributions.Poisson(5), input_size = 3000, ρ = 0, step_size = 0.1, max_iter = 100)) @test is_admissable(unit_test_train_subloss(gradient_eval = Loss(:Poisson), input_distribution = Distributions.Poisson(5), input_size = 5000, ρ = 0, step_size = 0.1, max_iter = 100)) @test is_admissable(unit_test_train_subloss(gradient_eval = Loss(:Poisson), input_distribution = Distributions.Poisson(5), input_size = 1000, ρ = 0.2, step_size = 0.1, max_iter = 100)) @test is_admissable(unit_test_train_subloss(gradient_eval = Loss(:Poisson), input_distribution = Distributions.Poisson(5), input_size = 3000, ρ = 0.2, step_size = 0.1, max_iter = 100)) @test is_admissable(unit_test_train_subloss(gradient_eval = Loss(:Poisson), input_distribution = Distributions.Poisson(5), input_size = 5000, ρ = 0.2, step_size = 0.1, max_iter = 100)) end end #include("test_impl_poissonloss.jl") #include("test_impl_gammaloss.jl") @label END_OF_TEST
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
423
using MatrixCompletion.Utilities.PrettyPrinter using Printf @testset "$(format("PrettyPrinter: Tables Header"))" begin let header_list = ["Iter", "R(primal)", " R(dual)", "ℒ(Gaussian)", "ℒ(Bernoulli)", "ℒ(Poisson)", "ℒ(Gamma)", "λ‖diag(Z)‖ᵢ", " μ⟨I, X⟩", " ‖Z₁₂‖ᵢ "] row = map(x -> @sprintf("%3.2e", x), rand(10)) row[1] = "100" table_header(header_list) add_row(header_list, data = row) end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
2959
import Distributions import LinearAlgebra const VISUAL_RANDOM_STRUCTURE = true @testset "$(format("Random Structure: FixedRankMatrix[Constructor]"))" begin # test data type @test isa(FixedRankMatrix{Distributions.Poisson},DataType) == true @test isa(FixedRankMatrix{Distributions.Poisson}(),DataType) == false # test default constructor @test FixedRankMatrix{Distributions.Poisson}(Distributions.Poisson();rank=4).rank==4 # test shorthanded constructor @test FixedRankMatrix(Distributions.Poisson(5),rank=2).rank == 2 @test typeof(FixedRankMatrix(Distributions.Poisson(5),rank=2).dist) == Distributions.Poisson{Float64} # test mixed distribution end @testset "$(format("Random Structure: FixedRankMatrix[overload: Base.rand]"))" begin let tc1 = rand(FixedRankMatrix(Distributions.Gaussian(0,1),rank =3), 10,10) @test_logs (:warn,"Rank is not specified. Using formula: rank= ⌊0.3 * (row ∧ col)⌋") rand(FixedRankMatrix(Distributions.Gaussian(0,1)), 100,30) tc2 = rand(FixedRankMatrix(Distributions.Gaussian(0,1)), 100,30) @test check(:rank,tc1,3) @test check(:rank,tc2,9) tc3 = rand([(FixedRankMatrix(Distributions.Gaussian(0,1), rank=2),10,3), (FixedRankMatrix(Distributions.Poisson(5), rank=2),10,3), (FixedRankMatrix(Distributions.Bernoulli(0.5), rank=2),10,4)]) @test LinearAlgebra.rank(tc3) == 6 end end @testset "$(format("Random Structure: FixedRankMatrix[overload: Concepts.provide]"))" begin # test provide interface let tc = provide(FixedRankMatrix(Distributions.Gaussian(0,1),rank=5), row = 10,col=10) @test check(:dimension,tc,(10,10)) @test check(:rank,tc,5) end end @testset "$(format("Random Structure: GaussianMatrix"))" begin let tc = GaussianMatrix(20,20,rank=10,μ=0.0,σ=1.0) @test check(:dimension,tc,(20,20)) @test check(:rank,tc,10) # test optional rank parameter tc1 = GaussianMatrix(20,20;μ=0,σ=1) @test check(:dimension,tc1,(20,20)) @test check(:rank,tc1,20) end end @testset "$(format("Random Structure: PoissonMatrix"))" begin let tc = PoissonMatrix(20,20,rank=10,λ=3) @test check(:dimension,tc,(20,20)) @test check(:rank,tc,10) # test optional rank parameter tc1 = PoissonMatrix(20,20;λ=3) @test check(:dimension,tc1,(20,20)) @test check(:rank,tc1,20) end end @testset "$(format("Random Structure: BernoulliMatrix"))" begin let tc = BernoulliMatrix(20,20,rank=10,p=0.5) @test check(:dimension,tc,(20,20)) @test check(:rank,tc,10) # test optional rank parameter tc1 = BernoulliMatrix(20,20;p=0.5) @test check(:dimension,tc1,(20,20)) @test check(:rank,tc1,20) end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
2216
using MatrixCompletion @testset "$(format("Sampling: BernoulliModel[VecOrMat]"))" begin sample_bernoulli_model0 = Sampler(BernoulliModel(0.8)) tc1 = sample_bernoulli_model0.draw(ones(5,5)) @test isa(tc1, Array{MaybeMissing{Float64},2}) || Array{Float64,2} tc2 = sample_bernoulli_model0.draw([1,2,3,4,5]) @test isa(tc2, Array{MaybeMissing{Int64},1}) || isa(tc2,Array{Int64}) sample_bernoulli_model1= provide(Sampler{BernoulliModel}(),rate = 0.8) tc3 = sample_bernoulli_model1.draw(ones(5,5)) @test isa(tc3, Array{MaybeMissing{Float64},2}) || Array{Float64,2} tc4 = sample_bernoulli_model1.draw([1,2,3,4,5]) @test isa(tc4, Array{MaybeMissing{Int64},1}) || isa(tc4,Array{Int64}) end @testset "$(format("Sampling: UniformModel[VecOrMat]"))" begin #==================== Vector Case ====================# let tc1 = rand(10000) output = Sampler(UniformModel(0.5)).draw(tc1) @test count(x->ismissing(x),output) > 1000 @test count(x->!ismissing(x),output) > 1000 # stronger tc2 = rand(10000) output = Sampler(UniformModel(0.1)).draw(tc2) @test count(x->ismissing(x),output) >1000 @test count(x->!ismissing(x),output) <1000 end #==================== Matrix Case ====================# let @test 4 <= count(x -> !ismissing(x),Sampler(UniformModel(0.1)).draw(ones(10,10))) <= 10 @test 10 < count(x -> ismissing(x), Sampler(UniformModel(0.1)).draw(ones(10,10))) end #==================== Factory Mode ====================# let sampler = provide(Sampler{UniformModel}(),rate = 0.5) tc1 = rand(10000) output = sampler.draw(tc1) @test count(x->ismissing(x),output) > 1000 @test count(x->!ismissing(x),output) > 1000 # stronger tc2 = rand(10000) sampler2 = provide(Sampler{UniformModel}(),rate = 0.1) output = sampler2.draw(tc2) @test count(x->ismissing(x),output) >1000 @test count(x->!ismissing(x),output) <=1000 @test 4 <= count(x -> !ismissing(x),sampler2.draw(ones(10,10))) <= 10 @test 10 < count(x -> ismissing(x),sampler2.draw(ones(10,10))) end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
1079
using MatrixCompletion import Distributions @testset "$(format("SGD Optimizer: Bernoulli Loss [Small][Forgiving][Native]"))" begin let input_size = 500 y = rand(Distributions.Bernoulli(0.6), input_size) * 1.0 mle_x = MatrixCompletion.Losses.sgd_train(Loss{Bernoulli}(), fx = rand(input_size), y = y, c = zeros(input_size), ρ = 0, α = 0.2, ρ₁ = 0.9, ρ₂ = 0.999, batch_size = 500, epoch = 10); prediction = predict(Bernoulli(),forward_map(Bernoulli(),mle_x)) tc = provide(Diagnostics{Poisson()}(), input_data=prediction, reference=y) display(tc) end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git
[ "MIT" ]
0.1.0
50e804aa999e452ce4bf5edc50493838bd744e09
code
2095
import LinearAlgebra function relative_error_l2(a, b) return LinearAlgebra.norm(a - b)^2 / LinearAlgebra.norm(b)^2 end # @testset "$(format("SGD Optimizer: Bernoulli Loss [Small][Forgiving][Native]"))" begin # let # input_size = 1600* 400 # y = rand(Distributions.Gamma(10, 2), input_size) * 1.0 # mle_x = MatrixCompletion.Losses.sgd_train(Loss{Gamma}(), # fx = y, # y = y, # c = zeros(input_size), # ρ = 0.2, # α = 0.2, # ρ₁ = 0.9, # ρ₂ = 0.999, # batch_size = 1600 * 400, # epoch = 20); # prediction = predict(Gamma(),forward_map(Gamma(),mle_x)) # # @show(relative_error_l2(prediction, y)) # tc = provide(Diagnostics{Poisson()}(), # input_data=prediction, reference=y) # display(tc) # end # end @testset "$(format("GD Optimizer: Gamma Loss [Small][Forgiving][Native]"))" begin let input_size = 200 * 200 y = rand(Distributions.Gamma(10, 2), input_size) * 1.0 mle_x = MatrixCompletion.Losses.train(Loss{Gamma}(), fx = rand(input_size), y = y, c = zeros(input_size), ρ = 0, γ = 0.2, iter = 500, verbose = true) @show(mle_x[1:20]) prediction = predict(Gamma(),forward_map(Gamma(),mle_x)) tc = provide(Diagnostics{Poisson()}(), input_data=prediction, reference=y) display(tc) end end
MatrixCompletion
https://github.com/jasonsun0310/MatrixCompletion.jl.git