metadata
base_model: cross-encoder/nli-deberta-v3-large
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:40338
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: >-
"Rumpelstilsken, I command the sun to set!" He seemed to sense a
hesitation in his mind, and then the impression of jeweled gears turning.
sentences:
- A football game is playing.
- He sensed hesitation when commanding Rumpelstiltskin.
- I ran and he saw me immediately.
- source_sentence: A woman wears sunglasses and a black coat as she walks.
sentences:
- The lady in black walks while wearing her shades.
- Two women were walking
- The people are running towards the mountains.
- source_sentence: >-
The Congress relies on GAO to examine virtually every federal program,
activity, and policy, as well as institutions that rely on federal funds.
sentences:
- The men are standing in line at the restaurant.
- GAO helps Congress.
- >-
Tide permitting, view the shrine from its base to appreciate its full
size.
- source_sentence: >-
The resort was named after Louis James Fraser, an English adventurer and
scoundrel, who dealt in mule hides, tin, opium, and gambling.
sentences:
- A man in front of people.
- The resort was named after an English adventurer and scoundrel.
- A woman is holding flowers by two men on a bench.
- source_sentence: Three men riding a bicycle, tow of them are wearing a helmet.
sentences:
- >-
Accountability measures help establish the financial condition of the
government.
- A man is pushing a truck.
- There are at least two helmets.
model-index:
- name: SentenceTransformer based on cross-encoder/nli-deberta-v3-large
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: eval
type: eval
metrics:
- type: cosine_accuracy@1
value: 0.0003470672814715653
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.2842728940453171
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.42875204521790866
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5317318657345431
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.0003470672814715653
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.09475763134843902
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.08575040904358174
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.053173186573454316
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.0003470672814715653
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.2842728940453171
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.42875204521790866
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5317318657345431
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.2599623819220365
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.17320152646642903
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.1849889511878054
name: Cosine Map@100
- type: dot_accuracy@1
value: 0.003718578015766771
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.262531607913134
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.40182954038375723
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.5089741682780504
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.003718578015766771
name: Dot Precision@1
- type: dot_precision@3
value: 0.08751053597104465
name: Dot Precision@3
- type: dot_precision@5
value: 0.08036590807675144
name: Dot Precision@5
- type: dot_precision@10
value: 0.050897416827805034
name: Dot Precision@10
- type: dot_recall@1
value: 0.003718578015766771
name: Dot Recall@1
- type: dot_recall@3
value: 0.262531607913134
name: Dot Recall@3
- type: dot_recall@5
value: 0.40182954038375723
name: Dot Recall@5
- type: dot_recall@10
value: 0.5089741682780504
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.24760156704826422
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.16454750021051548
name: Dot Mrr@10
- type: dot_map@100
value: 0.17684391661589097
name: Dot Map@100
SentenceTransformer based on cross-encoder/nli-deberta-v3-large
This is a sentence-transformers model finetuned from cross-encoder/nli-deberta-v3-large. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: cross-encoder/nli-deberta-v3-large
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("richie-ghost/sbert_ft_cross-encoder-nli-deberta-v3-large")
# Run inference
sentences = [
'Three men riding a bicycle, tow of them are wearing a helmet.',
'There are at least two helmets.',
'Accountability measures help establish the financial condition of the government.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
eval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.0003 |
cosine_accuracy@3 | 0.2843 |
cosine_accuracy@5 | 0.4288 |
cosine_accuracy@10 | 0.5317 |
cosine_precision@1 | 0.0003 |
cosine_precision@3 | 0.0948 |
cosine_precision@5 | 0.0858 |
cosine_precision@10 | 0.0532 |
cosine_recall@1 | 0.0003 |
cosine_recall@3 | 0.2843 |
cosine_recall@5 | 0.4288 |
cosine_recall@10 | 0.5317 |
cosine_ndcg@10 | 0.26 |
cosine_mrr@10 | 0.1732 |
cosine_map@100 | 0.185 |
dot_accuracy@1 | 0.0037 |
dot_accuracy@3 | 0.2625 |
dot_accuracy@5 | 0.4018 |
dot_accuracy@10 | 0.509 |
dot_precision@1 | 0.0037 |
dot_precision@3 | 0.0875 |
dot_precision@5 | 0.0804 |
dot_precision@10 | 0.0509 |
dot_recall@1 | 0.0037 |
dot_recall@3 | 0.2625 |
dot_recall@5 | 0.4018 |
dot_recall@10 | 0.509 |
dot_ndcg@10 | 0.2476 |
dot_mrr@10 | 0.1645 |
dot_map@100 | 0.1768 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 40,338 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 5 tokens
- mean: 19.64 tokens
- max: 129 tokens
- min: 4 tokens
- mean: 11.27 tokens
- max: 36 tokens
- Samples:
sentence_0 sentence_1 A group of ladies trying to learn how to belly dance.
Several women learn the art of exotic dancing.
A man and a woman are having a conversation, while the man drinks a beer.
The man is drinking.
A brown dog drinks from a water bottle.
A brown cat drinks from a bowl.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 4multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss | eval_cosine_map@100 |
---|---|---|---|
0.1983 | 500 | 1.2356 | 0.0873 |
0.3965 | 1000 | 0.4077 | 0.1200 |
0.5948 | 1500 | 0.3205 | 0.1280 |
0.7930 | 2000 | 0.2576 | 0.1416 |
0.9913 | 2500 | 0.2435 | 0.1476 |
1.0 | 2522 | - | 0.1492 |
1.1895 | 3000 | 0.1821 | 0.1553 |
1.3878 | 3500 | 0.1237 | 0.1589 |
1.5860 | 4000 | 0.1074 | 0.1603 |
1.7843 | 4500 | 0.0905 | 0.1654 |
1.9826 | 5000 | 0.0783 | 0.1685 |
2.0 | 5044 | - | 0.1683 |
2.1808 | 5500 | 0.0583 | 0.1698 |
2.3791 | 6000 | 0.0432 | 0.1746 |
2.5773 | 6500 | 0.0365 | 0.1749 |
2.7756 | 7000 | 0.0303 | 0.1791 |
2.9738 | 7500 | 0.0276 | 0.1788 |
3.0 | 7566 | - | 0.1805 |
3.1721 | 8000 | 0.02 | 0.1807 |
3.3703 | 8500 | 0.013 | 0.1823 |
3.5686 | 9000 | 0.0123 | 0.1839 |
3.7669 | 9500 | 0.0099 | 0.1852 |
3.9651 | 10000 | 0.01 | 0.1850 |
4.0 | 10088 | - | 0.1850 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.5.0+cu121
- Accelerate: 1.0.1
- Datasets: 3.0.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}