richie-ghost's picture
Add new SentenceTransformer model
c59b096 verified
metadata
base_model: cross-encoder/nli-deberta-v3-large
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
  - dot_accuracy@1
  - dot_accuracy@3
  - dot_accuracy@5
  - dot_accuracy@10
  - dot_precision@1
  - dot_precision@3
  - dot_precision@5
  - dot_precision@10
  - dot_recall@1
  - dot_recall@3
  - dot_recall@5
  - dot_recall@10
  - dot_ndcg@10
  - dot_mrr@10
  - dot_map@100
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:40338
  - loss:MultipleNegativesRankingLoss
widget:
  - source_sentence: >-
      "Rumpelstilsken, I command the sun to set!"  He seemed to sense a
      hesitation in his mind, and then the impression of jeweled gears turning.
    sentences:
      - A football game is playing.
      - He sensed hesitation when commanding Rumpelstiltskin.
      - I ran and he saw me immediately.
  - source_sentence: A woman wears sunglasses and a black coat as she walks.
    sentences:
      - The lady in black walks while wearing her shades.
      - Two women were walking
      - The people are running towards the mountains.
  - source_sentence: >-
      The Congress relies on GAO to examine virtually every federal program,
      activity, and policy, as well as institutions that rely on federal funds.
    sentences:
      - The men are standing in line at the restaurant.
      - GAO helps Congress.
      - >-
        Tide permitting, view the shrine from its base to appreciate its full
        size.
  - source_sentence: >-
      The resort was named after Louis James Fraser, an English adventurer and
      scoundrel, who dealt in mule hides, tin, opium, and gambling.
    sentences:
      - A man in front of people.
      - The resort was named after an English adventurer and scoundrel.
      - A woman is holding flowers by two men on a bench.
  - source_sentence: Three men riding a bicycle, tow of them are wearing a helmet.
    sentences:
      - >-
        Accountability measures help establish the financial condition of the
        government.
      - A man is pushing a truck.
      - There are at least two helmets.
model-index:
  - name: SentenceTransformer based on cross-encoder/nli-deberta-v3-large
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: eval
          type: eval
        metrics:
          - type: cosine_accuracy@1
            value: 0.0003470672814715653
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.2842728940453171
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.42875204521790866
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.5317318657345431
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.0003470672814715653
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.09475763134843902
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.08575040904358174
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.053173186573454316
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.0003470672814715653
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.2842728940453171
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.42875204521790866
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.5317318657345431
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.2599623819220365
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.17320152646642903
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.1849889511878054
            name: Cosine Map@100
          - type: dot_accuracy@1
            value: 0.003718578015766771
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.262531607913134
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.40182954038375723
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.5089741682780504
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.003718578015766771
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.08751053597104465
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.08036590807675144
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.050897416827805034
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.003718578015766771
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.262531607913134
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.40182954038375723
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.5089741682780504
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.24760156704826422
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.16454750021051548
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.17684391661589097
            name: Dot Map@100

SentenceTransformer based on cross-encoder/nli-deberta-v3-large

This is a sentence-transformers model finetuned from cross-encoder/nli-deberta-v3-large. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: cross-encoder/nli-deberta-v3-large
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 1024 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("richie-ghost/sbert_ft_cross-encoder-nli-deberta-v3-large")
# Run inference
sentences = [
    'Three men riding a bicycle, tow of them are wearing a helmet.',
    'There are at least two helmets.',
    'Accountability measures help establish the financial condition of the government.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.0003
cosine_accuracy@3 0.2843
cosine_accuracy@5 0.4288
cosine_accuracy@10 0.5317
cosine_precision@1 0.0003
cosine_precision@3 0.0948
cosine_precision@5 0.0858
cosine_precision@10 0.0532
cosine_recall@1 0.0003
cosine_recall@3 0.2843
cosine_recall@5 0.4288
cosine_recall@10 0.5317
cosine_ndcg@10 0.26
cosine_mrr@10 0.1732
cosine_map@100 0.185
dot_accuracy@1 0.0037
dot_accuracy@3 0.2625
dot_accuracy@5 0.4018
dot_accuracy@10 0.509
dot_precision@1 0.0037
dot_precision@3 0.0875
dot_precision@5 0.0804
dot_precision@10 0.0509
dot_recall@1 0.0037
dot_recall@3 0.2625
dot_recall@5 0.4018
dot_recall@10 0.509
dot_ndcg@10 0.2476
dot_mrr@10 0.1645
dot_map@100 0.1768

Training Details

Training Dataset

Unnamed Dataset

  • Size: 40,338 training samples
  • Columns: sentence_0 and sentence_1
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1
    type string string
    details
    • min: 5 tokens
    • mean: 19.64 tokens
    • max: 129 tokens
    • min: 4 tokens
    • mean: 11.27 tokens
    • max: 36 tokens
  • Samples:
    sentence_0 sentence_1
    A group of ladies trying to learn how to belly dance. Several women learn the art of exotic dancing.
    A man and a woman are having a conversation, while the man drinks a beer. The man is drinking.
    A brown dog drinks from a water bottle. A brown cat drinks from a bowl.
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • num_train_epochs: 4
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • eval_use_gather_object: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step Training Loss eval_cosine_map@100
0.1983 500 1.2356 0.0873
0.3965 1000 0.4077 0.1200
0.5948 1500 0.3205 0.1280
0.7930 2000 0.2576 0.1416
0.9913 2500 0.2435 0.1476
1.0 2522 - 0.1492
1.1895 3000 0.1821 0.1553
1.3878 3500 0.1237 0.1589
1.5860 4000 0.1074 0.1603
1.7843 4500 0.0905 0.1654
1.9826 5000 0.0783 0.1685
2.0 5044 - 0.1683
2.1808 5500 0.0583 0.1698
2.3791 6000 0.0432 0.1746
2.5773 6500 0.0365 0.1749
2.7756 7000 0.0303 0.1791
2.9738 7500 0.0276 0.1788
3.0 7566 - 0.1805
3.1721 8000 0.02 0.1807
3.3703 8500 0.013 0.1823
3.5686 9000 0.0123 0.1839
3.7669 9500 0.0099 0.1852
3.9651 10000 0.01 0.1850
4.0 10088 - 0.1850

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.2.1
  • Transformers: 4.44.2
  • PyTorch: 2.5.0+cu121
  • Accelerate: 1.0.1
  • Datasets: 3.0.2
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}