File size: 20,576 Bytes
8e5ed10
1314a1a
 
 
 
 
 
565c377
7d1b388
1314a1a
 
7d1b388
 
 
565c377
1314a1a
 
 
8e5ed10
 
 
 
 
2e1613f
 
8e5ed10
2e1613f
8e5ed10
 
b98d20d
8e5ed10
b98d20d
 
8e5ed10
 
2e1613f
 
565c377
7d1b388
6efaa17
1314a1a
01c98ec
1314a1a
 
 
 
 
 
 
01c98ec
1314a1a
01c98ec
 
b219f09
 
b3e926c
7d1b388
 
4e75a1b
7d1b388
1314a1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d1b388
b3e926c
 
 
6efaa17
b3e926c
 
 
6efaa17
b3e926c
6efaa17
b3e926c
 
f4ce762
b3e926c
f4ce762
 
 
 
 
 
 
 
b3e926c
8144261
b3e926c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
070d88e
7d1b388
b3e926c
 
 
 
3b292bf
b3e926c
 
7d1b388
4b77ec3
 
 
7d1b388
 
 
 
 
 
 
 
 
 
0107ad0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fd8732
0107ad0
7d1b388
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0107ad0
7d1b388
 
 
 
 
 
 
4b77ec3
7d1b388
1314a1a
bd8c37c
0107ad0
bcd193d
 
 
 
 
 
 
 
 
 
 
 
52cbc64
4f63778
52cbc64
0107ad0
4f63778
e18a4a7
1314a1a
 
52cbc64
 
 
 
 
bd8c37c
0107ad0
 
 
 
 
565c377
 
 
 
 
 
 
f606246
 
6176322
f606246
 
 
 
 
 
 
 
d1bc653
f288ccd
 
06ec051
 
0107ad0
4f63778
52cbc64
4f63778
52cbc64
 
 
4f63778
52cbc64
 
4f63778
1a9f873
0107ad0
f22412b
1a9f873
f22412b
b3e926c
 
1314a1a
 
 
 
1a9f873
bd8c37c
 
 
 
1f028f9
 
1314a1a
0b55d23
f22412b
8da0cf5
beb4702
 
8144261
a56b963
8da0cf5
 
 
1314a1a
7d9504d
 
 
8144261
634c112
7493b28
7d1b388
 
f369728
7d1b388
a368037
 
7d1b388
 
 
f369728
 
7d1b388
1314a1a
7d1b388
 
 
bcd193d
cbfe1e2
 
 
 
 
 
 
 
 
 
7d6d2a6
 
8144261
 
 
 
 
 
 
 
 
 
 
 
1314a1a
0107ad0
bcd193d
b219f09
1314a1a
 
3994894
1a9f873
0107ad0
 
 
 
 
f888310
 
0874388
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429

import os
import re
import math
import requests
import json
import itertools

import numpy as np
import pandas as pd

import onnxruntime
import onnx
import gradio as gr

from huggingface_hub import hf_hub_url, cached_download
from transformers import AutoTokenizer
from transformers import pipeline

try:
    from extractnet import Extractor
    EXTRACTOR_NET = 'extractnet'
except ImportError:
    try:
        from dragnet import extract_content
        EXTRACTOR_NET = 'dragnet'
    except ImportError:
        try:
            import trafilatura
            from trafilatura.settings import use_config
            EXTRACTOR_NET = 'trafilatura'
            trafilatura_config = use_config()
            trafilatura_config.set("DEFAULT", "EXTRACTION_TIMEOUT", "0")    #To avoid it runnig signals to avoid clashing with gradio threads
        except ImportError:
            raise ImportError

print('[i] Using',EXTRACTOR_NET)

import spacy

from bertopic import BERTopic

import nltk
nltk.download('stopwords')
nltk.download('wordnet')
nltk.download('omw-1.4')
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
from nltk.stem import PorterStemmer

from unicodedata import normalize



OUT_HEADERS = ['E','S','G']
DF_SP500 = pd.read_csv('SP500_constituents.zip',compression=dict(method='zip'))

MODEL_TRANSFORMER_BASED = "distilbert-base-uncased"
MODEL_ONNX_FNAME = "ESG_classifier_batch.onnx"
MODEL_SENTIMENT_ANALYSIS = "ProsusAI/finbert"
#MODEL3
#BERTOPIC_REPO_ID = "oMateos2020/BERTopic-paraphrase-MiniLM-L3-v2-51topics-guided-model3"
#BERTOPIC_FILENAME = "BERTopic-paraphrase-MiniLM-L3-v2-51topics-guided-model3"
#bertopic_model = BERTopic.load(cached_download(hf_hub_url(BERTOPIC_REPO_ID , BERTOPIC_FILENAME )), embedding_model="paraphrase-MiniLM-L3-v2")

BERTOPIC_REPO_ID = "oMateos2020/BERTopic-distilbert-base-nli-mean-tokens"
BERTOPIC_FILENAME = "BERTopic-distilbert-base-nli-mean-tokens"
bertopic_model = BERTopic.load(cached_download(hf_hub_url(BERTOPIC_REPO_ID , BERTOPIC_FILENAME )))

#SECTOR_LIST = list(DF_SP500.Sector.unique())
SECTOR_LIST = ['Industry',
               'Health',
               'Technology',
               'Communication',
               'Consumer Staples',
               'Consumer Discretionary',
               'Utilities',
               'Financials',
               'Materials',
               'Real Estate',
               'Energy']


def _topic_sanitize_word(text):
    """Función realiza una primera limpieza-normalización del texto a traves de expresiones regex"""
    text = re.sub(r'@[\w_]+|#[\w_]+|https?://[\w_./]+', '', text) # Elimina menciones y URL, esto sería más para Tweets pero por si hay alguna mención o URL al ser criticas web   
    text = re.sub('\S*@\S*\s?', '', text) # Elimina correos electronicos
    text = re.sub(r'\((\d+)\)', '', text) #Elimina numeros entre parentesis
    text = re.sub(r'^\d+', '', text) #Elimina numeros sueltos
    text = re.sub(r'\n', '', text) #Elimina saltos de linea
    text = re.sub('\s+', ' ', text) # Elimina espacios en blanco adicionales
    text = re.sub(r'[“”]', '', text) # Elimina caracter citas 
    text = re.sub(r'[()]', '', text) # Elimina parentesis
    text = re.sub('\.', '', text) # Elimina punto
    text = re.sub('\,', '', text) # Elimina coma
    text = re.sub('’s', '', text) # Elimina posesivos
    #text = re.sub(r'-+', '', text) # Quita guiones para unir palabras compuestas (normalizaría algunos casos, exmujer y ex-mujer, todos a exmujer)
    text = re.sub(r'\.{3}', ' ', text) # Reemplaza puntos suspensivos
    # Esta exp regular se ha incluido "a mano" tras ver que era necesaria para algunos ejemplos
    text = re.sub(r"([\.\?])", r"\1 ", text) # Introduce espacio despues de punto e interrogacion
    # -> NFD (Normalization Form Canonical Decomposition) y eliminar diacríticos
    text = re.sub(r"([^n\u0300-\u036f]|n(?!\u0303(?![\u0300-\u036f])))[\u0300-\u036f]+", r"\1", 
                  normalize( "NFD", text), 0, re.I) # Eliminación de diacriticos (acentos y variantes puntuadas de caracteres por su forma simple excepto la 'ñ')
    # -> NFC (Normalization Form Canonical Composition)
    text = normalize( 'NFC', text)

    return text.lower().strip()

def _topic_clean_text(text, lemmatize=True, stem=True):
  words = text.split() 
  non_stopwords = [word for word in words if word not in stopwords.words('english')]
  clean_text = [_topic_sanitize_word(word) for word in non_stopwords] 
  if lemmatize:
    lemmatizer = WordNetLemmatizer()
    clean_text = [lemmatizer.lemmatize(word) for word in clean_text]
  if stem:
    ps =PorterStemmer()
    clean_text = [ps.stem(word) for word in clean_text]

  return ' '.join(clean_text).strip()

SECTOR_TOPICS = []
for sector in SECTOR_LIST:
  topics, _ = bertopic_model.find_topics(_topic_clean_text(sector), top_n=5)
  SECTOR_TOPICS.append(topics)

def _topic2sector(pred_topics):
  out = []
  for pred_topic in pred_topics:
    relevant_sectors = []
    for i in range(len(SECTOR_LIST)):
      if pred_topic in SECTOR_TOPICS[i]:
        relevant_sectors.append(list(DF_SP500.Sector.unique())[i])
    out.append(relevant_sectors)
  return out

def _inference_topic_match(text):
  out, _ = bertopic_model.transform([_topic_clean_text(t) for t in text])
  return out

def get_company_sectors(extracted_names, threshold=0.95):
  '''
  '''
  from thefuzz import process, fuzz
  output = []
  standard_names_tuples = []
  for extracted_name in extracted_names:
    name_match = process.extractOne(extracted_name,
                                            DF_SP500.Name, 
                                            scorer=fuzz.token_set_ratio)
    similarity = name_match[1]/100
    if similarity >= threshold:
      standard_names_tuples.append(name_match[:2])
  
  for extracted_name in extracted_names:
    name_match = process.extractOne(extracted_name,
                                            DF_SP500.Symbol, 
                                            scorer=fuzz.token_set_ratio)
    similarity = name_match[1]/100
    if similarity >= threshold:
      standard_names_tuples.append(name_match[:2]) 

  for std_comp_name, _ in standard_names_tuples:
    sectors = list(DF_SP500[['Name','Sector','Symbol']].where( (DF_SP500.Name == std_comp_name) | (DF_SP500.Symbol == std_comp_name)).dropna().itertuples(index=False, name=None))
    output += sectors
  return output

def filter_spans(spans, keep_longest=True):
    """Filter a sequence of spans and remove duplicates or overlaps. Useful for
    creating named entities (where one token can only be part of one entity) or
    when merging spans with `Retokenizer.merge`. When spans overlap, the (first)
    longest span is preferred over shorter spans.
    spans (Iterable[Span]): The spans to filter.
    keep_longest (bool): Specify whether to keep longer or shorter spans.
    RETURNS (List[Span]): The filtered spans.
    """
    get_sort_key = lambda span: (span.end - span.start, -span.start)
    sorted_spans = sorted(spans, key=get_sort_key, reverse=keep_longest)
    #print(f'sorted_spans: {sorted_spans}')
    result = []
    seen_tokens = set()
    for span in sorted_spans:
        # Check for end - 1 here because boundaries are inclusive
        if span.start not in seen_tokens and span.end - 1 not in seen_tokens:
            result.append(span)
            seen_tokens.update(range(span.start, span.end))
    result = sorted(result, key=lambda span: span.start)
    return result


def _inference_ner_spancat(text, limit_outputs=10):
    nlp = spacy.load("en_pipeline")
    out = []
    for doc in nlp.pipe(text):
        spans = doc.spans["sc"]
        #comp_raw_text = dict( sorted( dict(zip([str(x) for x in spans],[float(x)*penalty for x in spans.attrs['scores']])).items(), key=lambda x: x[1], reverse=True) )
        company_list = list(set([str(span).replace('\'s', '').replace('\u2019s','') for span in filter_spans(spans, keep_longest=True)]))[:limit_outputs]
        out.append(get_company_sectors(company_list))
    return out

#def _inference_summary_model_pipeline(text):
#    pipe = pipeline("text2text-generation", model=MODEL_SUMMARY_PEGASUS)
#    return pipe(text,truncation='longest_first')

def _inference_sentiment_model_pipeline(text):
    tokenizer_kwargs = {'padding':True,'truncation':True,'max_length':512}#,'return_tensors':'pt'}
    pipe = pipeline("sentiment-analysis", model=MODEL_SENTIMENT_ANALYSIS )
    return pipe(text,**tokenizer_kwargs)

#def _inference_sentiment_model_via_api_query(payload):
#    response = requests.post(API_HF_SENTIMENT_URL , headers={"Authorization": os.environ['hf_api_token']}, json=payload)
#    return response.json()

def _lematise_text(text):
   nlp = spacy.load("en_core_web_sm", disable=['ner'])
   text_out = []
   for doc in nlp.pipe(text): #see https://spacy.io/models#design
       new_text = ""
       for token in doc:
           if (not token.is_punct
               and not token.is_stop
               and not token.like_url
               and not token.is_space
               and not token.like_email
               #and not token.like_num
               and not token.pos_ == "CONJ"):
                    
                new_text = new_text + " " + token.lemma_

       text_out.append( new_text )
   return text_out

def sigmoid(x):
  return 1 / (1 + np.exp(-x))

def to_numpy(tensor):
    return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy()

def is_in_archive(url):
    try:
        r = requests.get('http://archive.org/wayback/available?url='+url)
        archive = json.loads(r.text)
    
        if archive['archived_snapshots'] :
            archive['archived_snapshots']['closest']
            return {'archived':archive['archived_snapshots']['closest']['available'], 'url':archive['archived_snapshots']['closest']['url'],'error':0}
        else:
            return {'archived':False, 'url':"", 'error':0}
    except:
        print(f"[E] Quering URL ({url}) from archive.org")
        return {'archived':False, 'url':"", 'error':-1}

#def _inference_ner(text):
#    return labels

def _inference_classifier(text):
    tokenizer = AutoTokenizer.from_pretrained(MODEL_TRANSFORMER_BASED)
    inputs = tokenizer(_lematise_text(text), return_tensors="np", padding="max_length", truncation=True) #this assumes head-only!
    ort_session = onnxruntime.InferenceSession(MODEL_ONNX_FNAME)
    onnx_model = onnx.load(MODEL_ONNX_FNAME)
    onnx.checker.check_model(onnx_model)

    # compute ONNX Runtime output prediction
    ort_outs = ort_session.run(None, input_feed=dict(inputs))

    return sigmoid(ort_outs[0])

def inference(input_batch,isurl,use_archive,filt_companies_topic,limit_companies=10):
    url_list = []    #Only used if isurl
    input_batch_content = []
#    if file_in.name is not "":
#        print("[i] Input is file:",file_in.name)
#        dft = pd.read_csv(
#                file_in.name,
#                compression=dict(method='zip')
#              )
#        assert file_col_name in dft.columns, "Indicated col_name not found in file"
#        input_batch_r = dft[file_col_name].values.tolist()
#    else:
    print("[i] Input is list")
    assert len(input_batch) > 0, "input_batch array is empty"
    input_batch_r = input_batch
 
    print("[i] Input size:",len(input_batch_r))
    
    if isurl:
        print("[i] Data is URL")
        if use_archive:
            print("[i] Use chached URL from archive.org")
        print("[i] Extracting contents using",EXTRACTOR_NET)
        for row_in in input_batch_r:
            if isinstance(row_in , list):
                url = row_in[0]
            else:
                url = row_in
            url_list.append(url)
            if use_archive:
                archive = is_in_archive(url)
                if archive['archived']:
                    url = archive['url']
            #Extract the data from url
            if(EXTRACTOR_NET == 'extractnet'):
              extracted = Extractor().extract(requests.get(url).text)
              input_batch_content.append(extracted['content'])
            elif(EXTRACTOR_NET == 'dragnet'):
              extracted = extract_content(requests.get(url).content)
              input_batch_content.append(extracted)
            elif(EXTRACTOR_NET == 'trafilatura'):
              try:
                  extracted = trafilatura.extract(trafilatura.fetch_url(url), include_comments=False, config=trafilatura_config, include_tables=False)
                  assert len(extracted)>100, "[W] Failed extracting "+url+" retrying with archived version"
              except:
                    archive = is_in_archive(url)
                    if archive['archived']:
                        print("[W] Using archive.org version of",url)
                        url = archive['url']
                        extracted = trafilatura.extract(trafilatura.fetch_url(url), include_comments=False, config=trafilatura_config, include_tables=False)
                    else:
                        print("[E] URL=",url,"not found")
                        extracted = ""
                        url_list.pop() #Remove last from list
                        
              if len(extracted)>100:
                  input_batch_content.append(extracted)
    else:
        print("[i] Data is news contents")
        if isinstance(input_batch_r[0], list):
            print("[i] Data is list of lists format")
            for row_in in input_batch_r:
                input_batch_content.append(row_in[0])
        else:
            print("[i] Data is single list format")
            input_batch_content = input_batch_r
    
    print("[i] Batch size:",len(input_batch_content))
    print("[i] Running ESG classifier inference...")
    prob_outs = _inference_classifier(input_batch_content)
    print("[i] Classifier output shape:",prob_outs.shape)
    print("[i] Running sentiment using",MODEL_SENTIMENT_ANALYSIS ,"inference...")
    sentiment = _inference_sentiment_model_pipeline(input_batch_content )
    print("[i] Running NER using custom spancat inference...")
    ner_labels = _inference_ner_spancat(input_batch_content ,limit_outputs=limit_companies)
    print("[i] Extracting topic using custom BERTopic...")
    topics = _inference_topic_match(input_batch_content)
    news_sectors = _topic2sector(topics)
    
    df = pd.DataFrame(prob_outs,columns =['E','S','G'])
    if isurl:
        df['URL'] = url_list
    else:
        df['content_id'] = range(1, len(input_batch_r)+1)
    df['sent_lbl'] = [d['label'] for d in sentiment ]
    df['sent_score'] = [d['score'] for d in sentiment ]
    df['topic'] = pd.DataFrame(news_sectors).iloc[:, 0]
    #df['sector_pred'] = pd.DataFrame(_topic2sector(topics)).iloc[:, 0] 
    print("[i] Pandas output shape:",df.shape)
    #[[], [('Nvidia', 'Information Technology')], [('Twitter', 'Communication Services'), ('Apple', 'Information Technology')], [], [], [], [], [], []]
    df["company"] = np.nan
    df["sector"] = np.nan
    df["symbol"] = np.nan
    dfo = pd.DataFrame(columns=['E','S','G','URL','sent_lbl','sent_score','topic','company','sector','symbol'])
    for idx in range(len(df.index)):
      if ner_labels[idx]: #not empty
        for ner in ner_labels[idx]:
          if filt_companies_topic:
              if news_sectors[idx]: #not empty
                  if news_sectors[idx][0] not in ner[1]:
                      continue
          dfo = pd.concat( [dfo, df.loc[[idx]].assign(company=ner[0], sector=ner[1], symbol=ner[2])], join='outer', ignore_index=True) #axis=0
    print("[i] Pandas output shape:",dfo.shape)
    return dfo.drop_duplicates()

title = "ESG API Demo"
description = """This is a demonstration of the full ESG pipeline backend where given a list of URL (english, news) the news contents are extracted, using extractnet, and fed to three models:

- A custom scheme for company extraction
- A custom ESG classifier for the ESG labeling of the news
- An off-the-shelf sentiment classification model (ProsusAI/finbert)

API input parameters:
- List: list of text. Either list of Url of the news (english) or list of extracted news contents
- 'Data type': int. 0=list is of extracted news contents, 1=list is of urls.
- `use_archive`: boolean. The model will extract the archived version in archive.org of the url indicated. This is useful with old news and to bypass news behind paywall
- `filter_companies`: boolean. Filter companies by news' topic
- `limit_companies`: integer. Number of found relevant companies to report.

"""
examples = [[ [['https://www.bbc.com/news/uk-62732447'],
            ["https://www.science.org/content/article/suspicions-grow-nanoparticles-pfizer-s-covid-19-vaccine-trigger-rare-allergic-reactions"],
            ["https://www.cnbc.com/2022/09/14/omicron-specific-covid-booster-shot-side-effects-what-to-expect.html"],
            ["https://www.reuters.com/business/healthcare-pharmaceuticals/brazil-approves-pfizer-vaccine-children-young-six-months-2022-09-17/"],
            ["https://www.statnews.com/2022/09/06/pfizer-covid-vaccines-researchers-next-gen-studies/"],
            ["https://www.cms.gov/newsroom/news-alert/updated-covid-19-vaccines-providing-protection-against-omicron-variant-available-no-cost"],
            ["https://www.bbc.com/news/health-62691102"],
            ["https://news.bloomberglaw.com/esg/abbvie-board-faces-new-investor-suit-over-humira-kickback-claims"],
            ["https://esgnews.com/amazon-backed-infinium-to-provide-ultra-low-carbon-electrofuels-for-use-in-trucking-fleet-in-2023/"],
            ["https://esgnews.com/comcast-announces-plan-to-double-energy-efficiency-by-2030-to-power-a-greener-internet/"],
            ["https://esgnews.com/ges-facts-technology-helps-the-city-of-los-angeles-move-closer-to-its-renewable-energy-goals/"],
            ['https://www.bbc.com/news/science-environment-62758811'],
            ['https://www.bbc.com/news/business-62524031'],
            ["https://www.knowesg.com/investors/blackstone-and-sphera-work-together-for-portfolio-decarbonization-program-17022022"],
            ["https://www.esgtoday.com/amazon-partners-with-matt-damons-water-org-to-provide-water-access-to-100-million-people/"],
            ["https://www.esgtoday.com/walmart-allocates-over-1-billion-to-renewable-energy-sustainable-buildings-circular-economy/"],
            ["https://www.esgtoday.com/anglo-american-ties-interest-on-745-million-bond-to-climate-water-job-creation-goals/"],
            ["https://www.esgtoday.com/blackrock-acquires-new-zealand-solar-as-a-service-provider-solarzero/"],
            ["https://www.esgtoday.com/blackrock-strikes-back-against-climate-activism-claims/"],
            ["https://www.esgtoday.com/hm-to-remove-sustainability-labels-from-products-following-investigation-by-regulator/"],
            ["https://www.knowesg.com/sustainable-finance/exxonmobil-fails-the-energy-transition-due-to-failed-governance-structure-04122021"],
            ["https://www.knowesg.com/companies/tesla-is-investigated-by-the-securities-and-exchange-commission-sec-on-solar-07122021"],
            ["https://www.knowesg.com/tech/pcg-and-exxonmobil-will-collaborate-on-plastic-recycling-in-malaysia-20092022"],
            ["https://esgnews.com/nike-launches-community-climate-resilience-program-with-2-million-grant-to-trust-for-public-land/"],
            ["https://esgnews.com/walmart-and-unitedhealth-group-collaborate-to-deliver-access-to-high-quality-affordable-health-care/"],
            ['https://www.bbc.com/news/science-environment-62680423']],'url',False,False,5]]
demo = gr.Interface(fn=inference, 
                    inputs=[gr.Dataframe(label='input batch', col_count=1, datatype='str', type='array', wrap=True),
                            gr.Dropdown(label='data type', choices=['text','url'], type='index', value='url'),
                            gr.Checkbox(label='Parse cached in archive.org'),
                            gr.Checkbox(label='Filter out companies by topic'),
                            gr.Slider(minimum=1, maximum=10, step=1, label='Limit NER output', value=5)],
                    outputs=[gr.Dataframe(label='output raw', col_count=1, type='pandas', wrap=True, header=OUT_HEADERS)],
                             #gr.Label(label='Company'),
                             #gr.Label(label='ESG'),
                             #gr.Label(label='Sentiment'),
                             #gr.Markdown()],
                    title=title,
                    description=description,
                    examples=examples)
demo.launch()