Spaces:
Sleeping
Sleeping
File size: 86,080 Bytes
2c41ede 0ef1e7a 679c889 9e010e9 7409de7 0ef1e7a a4d55a1 0ef1e7a a4d55a1 0ef1e7a a4d55a1 3e0fc3d a4d55a1 3e0fc3d a4d55a1 0ef1e7a a4d55a1 0ef1e7a b4e520b 8501045 b4e520b 8501045 b4e520b 0ef1e7a b4e520b 8501045 b4e520b 8501045 b4e520b 8501045 b4e520b 8501045 b4e520b 8501045 470297d 8501045 b4e520b 8501045 b4e520b 470297d b4e520b 470297d e1ccf49 8501045 676cf64 b4e520b 676cf64 b4e520b 676cf64 b4e520b 676cf64 b4e520b 676cf64 b4e520b 676cf64 b4e520b 676cf64 b4e520b 676cf64 b4e520b 676cf64 b4e520b 676cf64 b4e520b 676cf64 b4e520b 676cf64 b4e520b 676cf64 b4e520b 676cf64 b4e520b 0ef1e7a b4e520b 0ef1e7a a17b4f2 11269b9 470297d a4d55a1 470297d 11269b9 a4d55a1 11269b9 a4d55a1 11269b9 a4d55a1 11269b9 a4d55a1 11269b9 470297d a4d55a1 470297d 11269b9 a4d55a1 11269b9 a4d55a1 11269b9 a4d55a1 11269b9 470297d a4d55a1 11269b9 470297d a4d55a1 11269b9 a4d55a1 11269b9 a4d55a1 11269b9 470297d a4d55a1 11269b9 a4d55a1 11269b9 a4d55a1 11269b9 a4d55a1 470297d a4d55a1 470297d a4d55a1 470297d a4d55a1 470297d a4d55a1 470297d 0ef1e7a b4e520b a4d55a1 b4e520b a4d55a1 11269b9 a4d55a1 59f8ee9 a4d55a1 59f8ee9 a4d55a1 11269b9 a4d55a1 11269b9 a4d55a1 59f8ee9 a4d55a1 11269b9 a4d55a1 11269b9 a4d55a1 11269b9 b9f7c90 a4d55a1 59f8ee9 a4d55a1 b9f7c90 59f8ee9 a4d55a1 11269b9 a4d55a1 59f8ee9 a4d55a1 59f8ee9 a4d55a1 59f8ee9 a4d55a1 59f8ee9 a4d55a1 59f8ee9 a4d55a1 59f8ee9 a4d55a1 59f8ee9 0ef1e7a b4e520b a4d55a1 59f8ee9 b4e520b a4d55a1 11269b9 a4d55a1 470297d b4e520b 470297d 0ef1e7a 470297d 0ef1e7a 470297d b4e520b 470297d b4e520b 470297d b4e520b 470297d b4e520b 470297d 21cf1c2 a4d55a1 21cf1c2 a4d55a1 470297d a4d55a1 b4794a2 a4d55a1 7745d43 a4d55a1 9ddc325 a4d55a1 9ddc325 0ef1e7a b4e520b a4d55a1 37c8c7d a4d55a1 b4794a2 a4d55a1 b4794a2 a4d55a1 b4794a2 a4d55a1 b4794a2 a4d55a1 b4794a2 a4d55a1 b4794a2 a4d55a1 b4794a2 a4d55a1 b4794a2 a4d55a1 1a4e64f a4d55a1 470297d a4d55a1 0ef1e7a 470297d 0ef1e7a 470297d 0ef1e7a b4e520b 470297d b4e520b 470297d b4e520b 470297d b4e520b 470297d b4e520b 470297d b4e520b 470297d b4e520b 470297d b4e520b 470297d a4d55a1 470297d a4d55a1 470297d a4d55a1 470297d a4d55a1 470297d a4d55a1 470297d a4d55a1 470297d a4d55a1 470297d a4d55a1 470297d a4d55a1 470297d a4d55a1 470297d a4d55a1 1fd2c2a 470297d 1fd2c2a f7be255 1fd2c2a 0e8e44e f7be255 8f98474 f7be255 0e8e44e f7be255 1fd2c2a f9ef722 1fd2c2a f9ef722 1fd2c2a f9ef722 f7be255 1fd2c2a f7be255 1fd2c2a f7be255 0e8e44e ab96cef a4d55a1 e5fb6cc a4d55a1 812e60c a4d55a1 812e60c a4d55a1 812e60c a4d55a1 bf54860 a4d55a1 812e60c a4d55a1 e5fb6cc a4d55a1 14daade a4d55a1 8a32c87 a4d55a1 e5fb6cc a4d55a1 812e60c a4d55a1 812e60c 1fd2c2a a4d55a1 fa01404 a4d55a1 e5fb6cc a4d55a1 b89b477 fa01404 bf54860 a4d55a1 fa01404 a4d55a1 812e60c a4d55a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 |
from dataclasses import dataclass
from breed_health_info import breed_health_info
from breed_noise_info import breed_noise_info
import traceback
import math
import random
# @dataclass
# class UserPreferences:
# """使用者偏好設定的資料結構"""
# living_space: str # "apartment", "house_small", "house_large"
# yard_access: str # "no_yard", "shared_yard", "private_yard"
# exercise_time: int # minutes per day
# exercise_type: str # "light_walks", "moderate_activity", "active_training"
# grooming_commitment: str # "low", "medium", "high"
# experience_level: str # "beginner", "intermediate", "advanced"
# time_availability: str # "limited", "moderate", "flexible"
# has_children: bool
# children_age: str # "toddler", "school_age", "teenager"
# noise_tolerance: str # "low", "medium", "high"
# space_for_play: bool
# other_pets: bool
# climate: str # "cold", "moderate", "hot"
# health_sensitivity: str = "medium"
# barking_acceptance: str = None
# def __post_init__(self):
# """在初始化後運行,用於設置派生值"""
# if self.barking_acceptance is None:
# self.barking_acceptance = self.noise_tolerance
@dataclass
class UserPreferences:
"""使用者偏好設定的資料結構,整合基本條件與進階評估參數"""
living_space: str # "apartment", "house_small", "house_large"
yard_access: str # "no_yard", "shared_yard", "private_yard"
exercise_time: int # 每日運動時間(分鐘)
exercise_type: str # "light_walks", "moderate_activity", "active_training"
grooming_commitment: str # "low", "medium", "high"
experience_level: str # "beginner", "intermediate", "advanced"
time_availability: str # "limited", "moderate", "flexible"
has_children: bool
children_age: str # "toddler", "school_age", "teenager"
noise_tolerance: str # "low", "medium", "high"
space_for_play: bool
other_pets: bool
climate: str # "cold", "moderate", "hot"
living_floor: int = 1 # 居住樓層,對公寓住戶特別重要
exercise_intensity: str = "moderate" # "low", "moderate", "high"
home_alone_time: int = 4 # 每日獨處時間(小時)
health_sensitivity: str = "medium" # "low", "medium", "high"
barking_acceptance: str = None # 如果未指定,默認使用 noise_tolerance
lifestyle_activity: str = "moderate" # "sedentary", "moderate", "active"
def __post_init__(self):
"""初始化後執行,用於設置派生值和驗證"""
if self.barking_acceptance is None:
self.barking_acceptance = self.noise_tolerance
@staticmethod
def calculate_breed_bonus(breed_info: dict, user_prefs: 'UserPreferences') -> float:
"""計算品種額外加分"""
bonus = 0.0
temperament = breed_info.get('Temperament', '').lower()
# 1. 壽命加分(最高0.05)
try:
lifespan = breed_info.get('Lifespan', '10-12 years')
years = [int(x) for x in lifespan.split('-')[0].split()[0:1]]
longevity_bonus = min(0.05, (max(years) - 10) * 0.01)
bonus += longevity_bonus
except:
pass
# 2. 性格特徵加分(最高0.15)
positive_traits = {
'friendly': 0.05,
'gentle': 0.05,
'patient': 0.05,
'intelligent': 0.04,
'adaptable': 0.04,
'affectionate': 0.04,
'easy-going': 0.03,
'calm': 0.03
}
negative_traits = {
'aggressive': -0.08,
'stubborn': -0.06,
'dominant': -0.06,
'aloof': -0.04,
'nervous': -0.05,
'protective': -0.04
}
personality_score = sum(value for trait, value in positive_traits.items() if trait in temperament)
personality_score += sum(value for trait, value in negative_traits.items() if trait in temperament)
bonus += max(-0.15, min(0.15, personality_score))
# 3. 適應性加分(最高0.1)
adaptability_bonus = 0.0
if breed_info.get('Size') == "Small" and user_prefs.living_space == "apartment":
adaptability_bonus += 0.05
if 'adaptable' in temperament or 'versatile' in temperament:
adaptability_bonus += 0.05
bonus += min(0.1, adaptability_bonus)
# 4. 家庭相容性(最高0.1)
if user_prefs.has_children:
family_traits = {
'good with children': 0.06,
'patient': 0.05,
'gentle': 0.05,
'tolerant': 0.04,
'playful': 0.03
}
unfriendly_traits = {
'aggressive': -0.08,
'nervous': -0.07,
'protective': -0.06,
'territorial': -0.05
}
# 年齡評估這樣能更細緻
age_adjustments = {
'toddler': {'bonus_mult': 0.7, 'penalty_mult': 1.3},
'school_age': {'bonus_mult': 1.0, 'penalty_mult': 1.0},
'teenager': {'bonus_mult': 1.2, 'penalty_mult': 0.8}
}
adj = age_adjustments.get(user_prefs.children_age,
{'bonus_mult': 1.0, 'penalty_mult': 1.0})
family_bonus = sum(value for trait, value in family_traits.items()
if trait in temperament) * adj['bonus_mult']
family_penalty = sum(value for trait, value in unfriendly_traits.items()
if trait in temperament) * adj['penalty_mult']
bonus += min(0.15, max(-0.2, family_bonus + family_penalty))
# 5. 專門技能加分(最高0.1)
skill_bonus = 0.0
special_abilities = {
'working': 0.03,
'herding': 0.03,
'hunting': 0.03,
'tracking': 0.03,
'agility': 0.02
}
for ability, value in special_abilities.items():
if ability in temperament.lower():
skill_bonus += value
bonus += min(0.1, skill_bonus)
# 6. 適應性評估 - 根據具體環境給予更細緻的評分
adaptability_bonus = 0.0
if breed_info.get('Size') == "Small" and user_prefs.living_space == "apartment":
adaptability_bonus += 0.08 # 小型犬更適合公寓
# 環境適應性評估
if 'adaptable' in temperament or 'versatile' in temperament:
if user_prefs.living_space == "apartment":
adaptability_bonus += 0.10 # 適應性在公寓環境更重要
else:
adaptability_bonus += 0.05 # 其他環境仍有加分
# 氣候適應性
description = breed_info.get('Description', '').lower()
climate = user_prefs.climate
if climate == 'hot':
if 'heat tolerant' in description or 'warm climate' in description:
adaptability_bonus += 0.08
elif 'thick coat' in description or 'cold climate' in description:
adaptability_bonus -= 0.10
elif climate == 'cold':
if 'thick coat' in description or 'cold climate' in description:
adaptability_bonus += 0.08
elif 'heat tolerant' in description or 'short coat' in description:
adaptability_bonus -= 0.10
bonus += min(0.15, adaptability_bonus)
return min(0.5, max(-0.25, bonus))
@staticmethod
def calculate_additional_factors(breed_info: dict, user_prefs: 'UserPreferences') -> dict:
"""
計算額外的評估因素,結合品種特性與使用者需求的全面評估系統
此函數整合了:
1. 多功能性評估 - 品種的多樣化能力
2. 訓練性評估 - 學習和服從能力
3. 能量水平評估 - 活力和運動需求
4. 美容需求評估 - 護理和維護需求
5. 社交需求評估 - 與人互動的需求程度
6. 氣候適應性 - 對環境的適應能力
7. 運動類型匹配 - 與使用者運動習慣的契合度
8. 生活方式適配 - 與使用者日常生活的匹配度
"""
factors = {
'versatility': 0.0, # 多功能性
'trainability': 0.0, # 可訓練度
'energy_level': 0.0, # 能量水平
'grooming_needs': 0.0, # 美容需求
'social_needs': 0.0, # 社交需求
'weather_adaptability': 0.0,# 氣候適應性
'exercise_match': 0.0, # 運動匹配度
'lifestyle_fit': 0.0 # 生活方式適配度
}
temperament = breed_info.get('Temperament', '').lower()
description = breed_info.get('Description', '').lower()
size = breed_info.get('Size', 'Medium')
# 1. 多功能性評估 - 加強品種用途評估
versatile_traits = {
'intelligent': 0.25,
'adaptable': 0.25,
'trainable': 0.20,
'athletic': 0.15,
'versatile': 0.15
}
working_roles = {
'working': 0.20,
'herding': 0.15,
'hunting': 0.15,
'sporting': 0.15,
'companion': 0.10
}
# 計算特質分數
trait_score = sum(value for trait, value in versatile_traits.items()
if trait in temperament)
# 計算角色分數
role_score = sum(value for role, value in working_roles.items()
if role in description)
# 根據使用者需求調整多功能性評分
purpose_traits = {
'light_walks': ['calm', 'gentle', 'easy-going'],
'moderate_activity': ['adaptable', 'balanced', 'versatile'],
'active_training': ['intelligent', 'trainable', 'working']
}
if user_prefs.exercise_type in purpose_traits:
matching_traits = sum(1 for trait in purpose_traits[user_prefs.exercise_type]
if trait in temperament)
trait_score += matching_traits * 0.15
factors['versatility'] = min(1.0, trait_score + role_score)
# 2. 訓練性評估 - 考慮使用者經驗
trainable_traits = {
'intelligent': 0.3,
'eager to please': 0.3,
'trainable': 0.2,
'quick learner': 0.2,
'obedient': 0.2
}
base_trainability = sum(value for trait, value in trainable_traits.items()
if trait in temperament)
# 根據使用者經驗調整訓練性評分
experience_multipliers = {
'beginner': 1.2, # 新手更需要容易訓練的狗
'intermediate': 1.0,
'advanced': 0.8 # 專家能處理較難訓練的狗
}
factors['trainability'] = min(1.0, base_trainability *
experience_multipliers.get(user_prefs.experience_level, 1.0))
# 3. 能量水平評估 - 強化運動需求匹配
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
energy_levels = {
'VERY HIGH': {
'score': 1.0,
'min_exercise': 120,
'ideal_exercise': 150
},
'HIGH': {
'score': 0.8,
'min_exercise': 90,
'ideal_exercise': 120
},
'MODERATE': {
'score': 0.6,
'min_exercise': 60,
'ideal_exercise': 90
},
'LOW': {
'score': 0.4,
'min_exercise': 30,
'ideal_exercise': 60
}
}
breed_energy = energy_levels.get(exercise_needs, energy_levels['MODERATE'])
# 計算運動時間匹配度
if user_prefs.exercise_time >= breed_energy['ideal_exercise']:
energy_score = breed_energy['score']
else:
# 如果運動時間不足,按比例降低分數
deficit_ratio = max(0.4, user_prefs.exercise_time / breed_energy['ideal_exercise'])
energy_score = breed_energy['score'] * deficit_ratio
factors['energy_level'] = energy_score
# 4. 美容需求評估 - 加入更多毛髮類型考量
grooming_needs = breed_info.get('Grooming Needs', 'MODERATE').upper()
grooming_levels = {
'HIGH': 1.0,
'MODERATE': 0.6,
'LOW': 0.3
}
# 特殊毛髮類型評估
coat_adjustments = 0
if 'long coat' in description:
coat_adjustments += 0.2
if 'double coat' in description:
coat_adjustments += 0.15
if 'curly' in description:
coat_adjustments += 0.15
# 根據使用者承諾度調整
commitment_multipliers = {
'low': 1.5, # 低承諾度時加重美容需求的影響
'medium': 1.0,
'high': 0.8 # 高承諾度時降低美容需求的影響
}
base_grooming = grooming_levels.get(grooming_needs, 0.6) + coat_adjustments
factors['grooming_needs'] = min(1.0, base_grooming *
commitment_multipliers.get(user_prefs.grooming_commitment, 1.0))
# 5. 社交需求評估 - 加強家庭情況考量
social_traits = {
'friendly': 0.25,
'social': 0.25,
'affectionate': 0.20,
'people-oriented': 0.20
}
antisocial_traits = {
'independent': -0.20,
'aloof': -0.20,
'reserved': -0.15
}
social_score = sum(value for trait, value in social_traits.items()
if trait in temperament)
antisocial_score = sum(value for trait, value in antisocial_traits.items()
if trait in temperament)
# 家庭情況調整
if user_prefs.has_children:
child_friendly_bonus = 0.2 if 'good with children' in temperament else 0
social_score += child_friendly_bonus
factors['social_needs'] = min(1.0, max(0.0, social_score + antisocial_score))
# 6. 氣候適應性評估 - 更細緻的環境適應評估
climate_traits = {
'cold': {
'positive': ['thick coat', 'winter', 'cold climate'],
'negative': ['short coat', 'heat sensitive']
},
'hot': {
'positive': ['short coat', 'heat tolerant', 'warm climate'],
'negative': ['thick coat', 'cold climate']
},
'moderate': {
'positive': ['adaptable', 'all climate'],
'negative': []
}
}
climate_score = 0.4 # 基礎分數
if user_prefs.climate in climate_traits:
# 正面特質加分
climate_score += sum(0.2 for term in climate_traits[user_prefs.climate]['positive']
if term in description)
# 負面特質減分
climate_score -= sum(0.2 for term in climate_traits[user_prefs.climate]['negative']
if term in description)
factors['weather_adaptability'] = min(1.0, max(0.0, climate_score))
# 7. 運動類型匹配評估
exercise_type_traits = {
'light_walks': ['calm', 'gentle'],
'moderate_activity': ['adaptable', 'balanced'],
'active_training': ['athletic', 'energetic']
}
if user_prefs.exercise_type in exercise_type_traits:
match_score = sum(0.25 for trait in exercise_type_traits[user_prefs.exercise_type]
if trait in temperament)
factors['exercise_match'] = min(1.0, match_score + 0.5) # 基礎分0.5
# 8. 生活方式適配評估
lifestyle_score = 0.5 # 基礎分數
# 空間適配
if user_prefs.living_space == 'apartment':
if size == 'Small':
lifestyle_score += 0.2
elif size == 'Large':
lifestyle_score -= 0.2
elif user_prefs.living_space == 'house_large':
if size in ['Large', 'Giant']:
lifestyle_score += 0.2
# 時間可用性適配
time_availability_bonus = {
'limited': -0.1,
'moderate': 0,
'flexible': 0.1
}
lifestyle_score += time_availability_bonus.get(user_prefs.time_availability, 0)
factors['lifestyle_fit'] = min(1.0, max(0.0, lifestyle_score))
return factors
def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences) -> dict:
"""計算品種與使用者條件的相容性分數的優化版本"""
try:
print(f"Processing breed: {breed_info.get('Breed', 'Unknown')}")
print(f"Breed info keys: {breed_info.keys()}")
if 'Size' not in breed_info:
print("Missing Size information")
raise KeyError("Size information missing")
# def calculate_space_score(size: str, living_space: str, has_yard: bool, exercise_needs: str) -> float:
# """
# 主要改進:
# 1. 更均衡的基礎分數分配
# 2. 更細緻的空間需求評估
# 3. 強化運動需求與空間的關聯性
# """
# # 重新設計基礎分數矩陣,降低普遍分數以增加區別度
# base_scores = {
# "Small": {
# "apartment": 0.85, # 降低滿分機會
# "house_small": 0.80, # 小型犬不應在大空間得到太高分數
# "house_large": 0.75 # 避免小型犬總是得到最高分
# },
# "Medium": {
# "apartment": 0.45, # 維持對公寓環境的限制
# "house_small": 0.75, # 適中的分數
# "house_large": 0.85 # 給予合理的獎勵
# },
# "Large": {
# "apartment": 0.15, # 加重對大型犬在公寓的限制
# "house_small": 0.65, # 中等適合度
# "house_large": 0.90 # 最適合的環境
# },
# "Giant": {
# "apartment": 0.10, # 更嚴格的限制
# "house_small": 0.45, # 顯著的空間限制
# "house_large": 0.95 # 最理想的配對
# }
# }
# # 取得基礎分數
# base_score = base_scores.get(size, base_scores["Medium"])[living_space]
# # 運動需求相關的調整更加動態
# exercise_adjustments = {
# "Very High": {
# "apartment": -0.25, # 加重在受限空間的懲罰
# "house_small": -0.15,
# "house_large": -0.05
# },
# "High": {
# "apartment": -0.20,
# "house_small": -0.10,
# "house_large": 0
# },
# "Moderate": {
# "apartment": -0.10,
# "house_small": -0.05,
# "house_large": 0
# },
# "Low": {
# "apartment": 0.05, # 低運動需求在小空間反而有優勢
# "house_small": 0,
# "house_large": -0.05 # 輕微降低評分,因為空間可能過大
# }
# }
# # 根據空間類型獲取運動需求調整
# adjustment = exercise_adjustments.get(exercise_needs,
# exercise_adjustments["Moderate"])[living_space]
# # 院子效益根據品種大小和運動需求動態調整
# if has_yard:
# yard_bonus = {
# "Giant": 0.20,
# "Large": 0.15,
# "Medium": 0.10,
# "Small": 0.05
# }.get(size, 0.10)
# # 運動需求會影響院子的重要性
# if exercise_needs in ["Very High", "High"]:
# yard_bonus *= 1.2
# elif exercise_needs == "Low":
# yard_bonus *= 0.8
# current_score = base_score + adjustment + yard_bonus
# else:
# current_score = base_score + adjustment
# # 確保分數在合理範圍內,但避免極端值
# return min(0.95, max(0.15, current_score))
# def calculate_exercise_score(breed_needs: str, exercise_time: int, exercise_type: str) -> float:
# """
# 精確評估品種運動需求與使用者運動條件的匹配度
# Parameters:
# breed_needs: 品種的運動需求等級
# exercise_time: 使用者能提供的運動時間(分鐘)
# exercise_type: 使用者偏好的運動類型
# Returns:
# float: -0.2 到 0.2 之間的匹配分數
# """
# # 定義更細緻的運動需求等級
# exercise_levels = {
# 'VERY HIGH': {
# 'min': 120,
# 'ideal': 150,
# 'max': 180,
# 'intensity': 'high',
# 'sessions': 'multiple',
# 'preferred_types': ['active_training', 'intensive_exercise']
# },
# 'HIGH': {
# 'min': 90,
# 'ideal': 120,
# 'max': 150,
# 'intensity': 'moderate_high',
# 'sessions': 'multiple',
# 'preferred_types': ['active_training', 'moderate_activity']
# },
# 'MODERATE HIGH': {
# 'min': 70,
# 'ideal': 90,
# 'max': 120,
# 'intensity': 'moderate',
# 'sessions': 'flexible',
# 'preferred_types': ['moderate_activity', 'active_training']
# },
# 'MODERATE': {
# 'min': 45,
# 'ideal': 60,
# 'max': 90,
# 'intensity': 'moderate',
# 'sessions': 'flexible',
# 'preferred_types': ['moderate_activity', 'light_walks']
# },
# 'MODERATE LOW': {
# 'min': 30,
# 'ideal': 45,
# 'max': 70,
# 'intensity': 'light_moderate',
# 'sessions': 'flexible',
# 'preferred_types': ['light_walks', 'moderate_activity']
# },
# 'LOW': {
# 'min': 15,
# 'ideal': 30,
# 'max': 45,
# 'intensity': 'light',
# 'sessions': 'single',
# 'preferred_types': ['light_walks']
# }
# }
# # 獲取品種的運動需求配置
# breed_level = exercise_levels.get(breed_needs.upper(), exercise_levels['MODERATE'])
# # 計算時間匹配度(使用更平滑的評分曲線)
# if exercise_time >= breed_level['ideal']:
# if exercise_time > breed_level['max']:
# # 運動時間過長,適度降分
# time_score = 0.15 - (0.05 * (exercise_time - breed_level['max']) / 30)
# else:
# time_score = 0.15
# elif exercise_time >= breed_level['min']:
# # 在最小需求和理想需求之間,線性計算分數
# time_ratio = (exercise_time - breed_level['min']) / (breed_level['ideal'] - breed_level['min'])
# time_score = 0.05 + (time_ratio * 0.10)
# else:
# # 運動時間不足,根據差距程度扣分
# time_ratio = max(0, exercise_time / breed_level['min'])
# time_score = -0.15 * (1 - time_ratio)
# # 運動類型匹配度評估
# type_score = 0.0
# if exercise_type in breed_level['preferred_types']:
# type_score = 0.05
# if exercise_type == breed_level['preferred_types'][0]:
# type_score = 0.08 # 最佳匹配類型給予更高分數
# return max(-0.2, min(0.2, time_score + type_score))
def calculate_space_score(breed_info: dict, user_prefs: UserPreferences) -> float:
"""
計算品種與居住空間的匹配程度
這個函數實現了一個全面的空間評分系統,考慮:
1. 基本空間需求(住所類型與品種大小的匹配)
2. 樓層因素(特別是公寓住戶)
3. 戶外活動空間(院子類型及可用性)
4. 室內活動空間的實際可用性
5. 品種的特殊空間需求
Parameters:
-----------
breed_info: 包含品種特徵的字典,包括體型、活動需求等
user_prefs: 使用者偏好設定,包含居住條件相關信息
Returns:
--------
float: 0.0-1.0 之間的匹配分數
"""
# 取得品種基本信息
size = breed_info.get('Size', 'Medium')
temperament = breed_info.get('Temperament', '').lower()
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
# 基礎空間需求評分矩陣 - 考慮品種大小與居住空間的基本匹配度
base_space_scores = {
"Small": {
"apartment": 0.95, # 小型犬最適合公寓
"house_small": 0.90, # 小房子也很適合
"house_large": 0.85 # 大房子可能過大
},
"Medium": {
"apartment": 0.60, # 中型犬在公寓有一定限制
"house_small": 0.85, # 小房子較適合
"house_large": 0.95 # 大房子最理想
},
"Large": {
"apartment": 0.30, # 大型犬不適合公寓
"house_small": 0.70, # 小房子稍嫌擁擠
"house_large": 1.0 # 大房子最理想
},
"Giant": {
"apartment": 0.20, # 極大型犬極不適合公寓
"house_small": 0.50, # 小房子明顯不足
"house_large": 1.0 # 大房子必需
}
}
# 取得基礎空間分數
base_score = base_space_scores.get(size, base_space_scores["Medium"])[user_prefs.living_space]
# 公寓特殊考量
if user_prefs.living_space == "apartment":
# 樓層調整
floor_penalty = 0
if user_prefs.living_floor > 1:
if size in ["Large", "Giant"]:
floor_penalty = min(0.3, (user_prefs.living_floor - 1) * 0.05)
elif size == "Medium":
floor_penalty = min(0.2, (user_prefs.living_floor - 1) * 0.03)
else:
floor_penalty = min(0.1, (user_prefs.living_floor - 1) * 0.02)
base_score = max(0.2, base_score - floor_penalty)
# 戶外空間評估
yard_scores = {
"no_yard": 0,
"shared_yard": 0.1,
"private_yard": 0.2
}
# 根據品種大小調整院子加分
yard_size_multipliers = {
"Giant": 1.2,
"Large": 1.1,
"Medium": 1.0,
"Small": 0.8
}
yard_bonus = yard_scores[user_prefs.yard_access] * yard_size_multipliers.get(size, 1.0)
# 活動空間需求評估
activity_space_score = 0
if user_prefs.space_for_play:
if exercise_needs in ["VERY HIGH", "HIGH"]:
activity_space_score = 0.15
elif exercise_needs == "MODERATE":
activity_space_score = 0.10
else:
activity_space_score = 0.05
# 品種特性評估
temperament_adjustments = 0
if 'active' in temperament or 'energetic' in temperament:
if user_prefs.living_space == 'apartment':
temperament_adjustments -= 0.15
elif user_prefs.living_space == 'house_small':
temperament_adjustments -= 0.05
if 'calm' in temperament or 'lazy' in temperament:
if user_prefs.living_space == 'apartment':
temperament_adjustments += 0.10
if 'adaptable' in temperament:
temperament_adjustments += 0.05
# 家庭環境考量
if user_prefs.has_children:
if user_prefs.living_space == 'apartment':
# 公寓中有孩童需要更多活動空間
if size in ["Large", "Giant"]:
base_score *= 0.85
elif size == "Medium":
base_score *= 0.90
# 整合所有評分因素
final_score = base_score + yard_bonus + activity_space_score + temperament_adjustments
# 確保最終分數在合理範圍內
return max(0.15, min(1.0, final_score))
def calculate_exercise_score(breed_needs: str, exercise_time: int, user_prefs: 'UserPreferences') -> float:
"""
計算品種運動需求與使用者條件的匹配分數
這個函數實現了一個精細的運動評分系統,考慮:
1. 運動時間的匹配度(0-180分鐘)
2. 運動強度的適配性
3. 品種特性對運動的特殊需求
4. 生活方式的整體活躍度
Parameters:
-----------
breed_needs: 品種的運動需求等級
exercise_time: 使用者能提供的運動時間(分鐘)
user_prefs: 使用者偏好設定,包含運動類型和強度等信息
Returns:
--------
float: 0.0-1.0 之間的匹配分數
"""
# 定義更精確的運動需求標準
exercise_levels = {
'VERY HIGH': {
'min': 120,
'ideal': 150,
'max': 180,
'intensity_required': 'high',
'intensity_factors': {'high': 1.2, 'moderate': 0.8, 'low': 0.6},
'type_bonus': {'active_training': 0.15, 'moderate_activity': 0.05, 'light_walks': -0.1}
},
'HIGH': {
'min': 90,
'ideal': 120,
'max': 150,
'intensity_required': 'moderate',
'intensity_factors': {'high': 1.1, 'moderate': 1.0, 'low': 0.7},
'type_bonus': {'active_training': 0.1, 'moderate_activity': 0.1, 'light_walks': -0.05}
},
'MODERATE': {
'min': 60,
'ideal': 90,
'max': 120,
'intensity_required': 'moderate',
'intensity_factors': {'high': 1.0, 'moderate': 1.0, 'low': 0.8},
'type_bonus': {'active_training': 0.05, 'moderate_activity': 0.1, 'light_walks': 0.05}
},
'LOW': {
'min': 30,
'ideal': 60,
'max': 90,
'intensity_required': 'low',
'intensity_factors': {'high': 0.7, 'moderate': 0.9, 'low': 1.0},
'type_bonus': {'active_training': -0.05, 'moderate_activity': 0.05, 'light_walks': 0.1}
}
}
# 獲取品種運動需求配置
breed_level = exercise_levels.get(breed_needs.upper(), exercise_levels['MODERATE'])
# 計算基礎運動時間分數
def calculate_time_score(time: int, level: dict) -> float:
if time < level['min']:
# 運動時間不足,指數下降
return max(0.3, (time / level['min']) ** 1.5)
elif time < level['ideal']:
# 運動時間接近理想,線性增長
return 0.7 + 0.3 * ((time - level['min']) / (level['ideal'] - level['min']))
elif time <= level['max']:
# 理想運動時間範圍,高分保持
return 1.0
else:
# 運動時間過多,緩慢扣分
excess = (time - level['max']) / 30 # 每超過30分鐘扣分
return max(0.7, 1.0 - (excess * 0.1))
# 計算運動時間基礎分數
time_score = calculate_time_score(exercise_time, breed_level)
# 計算運動強度匹配度
intensity_factor = breed_level['intensity_factors'].get(user_prefs.exercise_intensity, 1.0)
# 運動類型加成
type_bonus = breed_level['type_bonus'].get(user_prefs.exercise_type, 0)
# 生活方式調整
lifestyle_adjustments = {
'sedentary': -0.1,
'moderate': 0,
'active': 0.1
}
lifestyle_factor = lifestyle_adjustments.get(user_prefs.lifestyle_activity, 0)
# 整合所有因素
final_score = time_score * intensity_factor + type_bonus + lifestyle_factor
# 確保分數在合理範圍內
return max(0.1, min(1.0, final_score))
def calculate_grooming_score(breed_needs: str, user_commitment: str, breed_size: str) -> float:
"""
計算美容需求分數,強化美容維護需求與使用者承諾度的匹配評估。
這個函數特別注意品種大小對美容工作的影響,以及不同程度的美容需求對時間投入的要求。
"""
# 重新設計基礎分數矩陣,讓美容需求的差異更加明顯
base_scores = {
"High": {
"low": 0.20, # 高需求對低承諾極不合適,顯著降低初始分數
"medium": 0.65, # 中等承諾仍有挑戰
"high": 1.0 # 高承諾最適合
},
"Moderate": {
"low": 0.45, # 中等需求對低承諾有困難
"medium": 0.85, # 較好的匹配
"high": 0.95 # 高承諾會有餘力
},
"Low": {
"low": 0.90, # 低需求對低承諾很合適
"medium": 0.85, # 略微降低以反映可能過度投入
"high": 0.80 # 可能造成資源浪費
}
}
# 取得基礎分數
base_score = base_scores.get(breed_needs, base_scores["Moderate"])[user_commitment]
# 根據品種大小調整美容工作量
size_adjustments = {
"Giant": {
"low": -0.35, # 大型犬的美容工作量顯著增加
"medium": -0.20,
"high": -0.10
},
"Large": {
"low": -0.25,
"medium": -0.15,
"high": -0.05
},
"Medium": {
"low": -0.15,
"medium": -0.10,
"high": 0
},
"Small": {
"low": -0.10,
"medium": -0.05,
"high": 0
}
}
# 應用體型調整
size_adjustment = size_adjustments.get(breed_size, size_adjustments["Medium"])[user_commitment]
current_score = base_score + size_adjustment
# 特殊毛髮類型的額外調整
def get_coat_adjustment(breed_description: str, commitment: str) -> float:
"""
評估特殊毛髮類型所需的額外維護工作
"""
adjustments = 0
# 長毛品種需要更多維護
if 'long coat' in breed_description.lower():
coat_penalties = {
'low': -0.20,
'medium': -0.15,
'high': -0.05
}
adjustments += coat_penalties[commitment]
# 雙層毛的品種掉毛量更大
if 'double coat' in breed_description.lower():
double_coat_penalties = {
'low': -0.15,
'medium': -0.10,
'high': -0.05
}
adjustments += double_coat_penalties[commitment]
# 捲毛品種需要定期專業修剪
if 'curly' in breed_description.lower():
curly_penalties = {
'low': -0.15,
'medium': -0.10,
'high': -0.05
}
adjustments += curly_penalties[commitment]
return adjustments
# 季節性考量
def get_seasonal_adjustment(breed_description: str, commitment: str) -> float:
"""
評估季節性掉毛對美容需求的影響
"""
if 'seasonal shedding' in breed_description.lower():
seasonal_penalties = {
'low': -0.15,
'medium': -0.10,
'high': -0.05
}
return seasonal_penalties[commitment]
return 0
# 專業美容需求評估
def get_professional_grooming_adjustment(breed_description: str, commitment: str) -> float:
"""
評估需要專業美容服務的影響
"""
if 'professional grooming' in breed_description.lower():
grooming_penalties = {
'low': -0.20,
'medium': -0.15,
'high': -0.05
}
return grooming_penalties[commitment]
return 0
# 應用所有額外調整
# 由於這些是示例調整,實際使用時需要根據品種描述信息進行調整
coat_adjustment = get_coat_adjustment("", user_commitment)
seasonal_adjustment = get_seasonal_adjustment("", user_commitment)
professional_adjustment = get_professional_grooming_adjustment("", user_commitment)
final_score = current_score + coat_adjustment + seasonal_adjustment + professional_adjustment
# 確保分數在有意義的範圍內,但允許更大的差異
return max(0.1, min(1.0, final_score))
# def calculate_experience_score(care_level: str, user_experience: str, temperament: str) -> float:
# """
# 計算使用者經驗與品種需求的匹配分數,加強經驗等級的影響力
# 重要改進:
# 1. 擴大基礎分數差異
# 2. 加重困難特徵的懲罰
# 3. 更細緻的品種特性評估
# """
# # 基礎分數矩陣 - 大幅擴大不同經驗等級的分數差異
# base_scores = {
# "High": {
# "beginner": 0.10, # 降低起始分,高難度品種對新手幾乎不推薦
# "intermediate": 0.60, # 中級玩家仍需謹慎
# "advanced": 1.0 # 資深者能完全勝任
# },
# "Moderate": {
# "beginner": 0.35, # 適中難度對新手仍具挑戰
# "intermediate": 0.80, # 中級玩家較適合
# "advanced": 1.0 # 資深者完全勝任
# },
# "Low": {
# "beginner": 0.90, # 新手友善品種
# "intermediate": 0.95, # 中級玩家幾乎完全勝任
# "advanced": 1.0 # 資深者完全勝任
# }
# }
# # 取得基礎分數
# score = base_scores.get(care_level, base_scores["Moderate"])[user_experience]
# temperament_lower = temperament.lower()
# temperament_adjustments = 0.0
# # 根據經驗等級設定不同的特徵評估標準
# if user_experience == "beginner":
# # 新手不適合的特徵 - 更嚴格的懲罰
# difficult_traits = {
# 'stubborn': -0.30, # 固執性格嚴重影響新手
# 'independent': -0.25, # 獨立性高的品種不適合新手
# 'dominant': -0.25, # 支配性強的品種需要經驗處理
# 'strong-willed': -0.20, # 強勢性格需要技巧管理
# 'protective': -0.20, # 保護性強需要適當訓練
# 'aloof': -0.15, # 冷漠性格需要耐心培養
# 'energetic': -0.15, # 活潑好動需要經驗引導
# 'aggressive': -0.35 # 攻擊傾向極不適合新手
# }
# # 新手友善的特徵 - 適度的獎勵
# easy_traits = {
# 'gentle': 0.05, # 溫和性格適合新手
# 'friendly': 0.05, # 友善性格容易相處
# 'eager to please': 0.08, # 願意服從較容易訓練
# 'patient': 0.05, # 耐心的特質有助於建立關係
# 'adaptable': 0.05, # 適應性強較容易照顧
# 'calm': 0.06 # 冷靜的性格較好掌握
# }
# # 計算特徵調整
# for trait, penalty in difficult_traits.items():
# if trait in temperament_lower:
# temperament_adjustments += penalty
# for trait, bonus in easy_traits.items():
# if trait in temperament_lower:
# temperament_adjustments += bonus
# # 品種類型特殊評估
# if 'terrier' in temperament_lower:
# temperament_adjustments -= 0.20 # 梗類犬種通常不適合新手
# elif 'working' in temperament_lower:
# temperament_adjustments -= 0.25 # 工作犬需要經驗豐富的主人
# elif 'guard' in temperament_lower:
# temperament_adjustments -= 0.25 # 護衛犬需要專業訓練
# elif user_experience == "intermediate":
# # 中級玩家的特徵評估
# moderate_traits = {
# 'stubborn': -0.15, # 仍然需要注意,但懲罰較輕
# 'independent': -0.10,
# 'intelligent': 0.08, # 聰明的特質可以好好發揮
# 'athletic': 0.06, # 運動能力可以適當訓練
# 'versatile': 0.07, # 多功能性可以開發
# 'protective': -0.08 # 保護性仍需注意
# }
# for trait, adjustment in moderate_traits.items():
# if trait in temperament_lower:
# temperament_adjustments += adjustment
# else: # advanced
# # 資深玩家能夠應對挑戰性特徵
# advanced_traits = {
# 'stubborn': 0.05, # 困難特徵反而成為優勢
# 'independent': 0.05,
# 'intelligent': 0.10,
# 'protective': 0.05,
# 'strong-willed': 0.05
# }
# for trait, bonus in advanced_traits.items():
# if trait in temperament_lower:
# temperament_adjustments += bonus
# # 確保最終分數範圍更大,讓差異更明顯
# final_score = max(0.05, min(1.0, score + temperament_adjustments))
# return final_score
def calculate_experience_score(breed_info: dict, user_prefs: UserPreferences) -> float:
"""
計算飼主經驗與品種需求的匹配分數
這個函數實現了一個全面的經驗評分系統,考慮:
1. 品種的基本照護難度
2. 飼主的經驗水平
3. 特殊照護需求(如健康問題、行為訓練)
4. 時間投入與生活方式的匹配
5. 家庭環境對照護的影響
特別注意:
- 新手飼主面對高難度品種時的顯著降分
- 資深飼主照顧簡單品種的微幅降分
- 特殊需求品種的額外評估
Parameters:
-----------
breed_info: 包含品種特徵的字典
user_prefs: 使用者偏好設定
Returns:
--------
float: 0.0-1.0 之間的匹配分數
"""
care_level = breed_info.get('Care Level', 'MODERATE').upper()
temperament = breed_info.get('Temperament', '').lower()
health_issues = breed_info.get('Health Issues', '').lower()
# 基礎照護難度評分矩陣
base_experience_scores = {
"HIGH": {
"beginner": 0.30, # 高難度品種對新手極具挑戰
"intermediate": 0.70, # 中級飼主需要額外努力
"advanced": 0.95 # 資深飼主最適合
},
"MODERATE": {
"beginner": 0.60, # 中等難度對新手有一定挑戰
"intermediate": 0.85, # 中級飼主較適合
"advanced": 0.90 # 資深飼主可能稍嫌簡單
},
"LOW": {
"beginner": 0.90, # 低難度適合新手
"intermediate": 0.85, # 中級飼主可能感覺無趣
"advanced": 0.80 # 資深飼主可能缺乏挑戰
}
}
# 取得基礎經驗分數
base_score = base_experience_scores.get(care_level,
base_experience_scores["MODERATE"])[user_prefs.experience_level]
# 時間可用性評估
time_adjustments = {
"limited": {
"HIGH": -0.20,
"MODERATE": -0.15,
"LOW": -0.10
},
"moderate": {
"HIGH": -0.10,
"MODERATE": -0.05,
"LOW": 0
},
"flexible": {
"HIGH": 0,
"MODERATE": 0.05,
"LOW": 0.10
}
}
time_adjustment = time_adjustments[user_prefs.time_availability][care_level]
# 行為特徵評估
def evaluate_temperament(temp: str, exp_level: str) -> float:
"""評估品種性格特徵與飼主經驗的匹配度"""
score = 0
# 困難特徵評估
difficult_traits = {
'stubborn': {'beginner': -0.20, 'intermediate': -0.10, 'advanced': 0},
'independent': {'beginner': -0.15, 'intermediate': -0.08, 'advanced': 0},
'dominant': {'beginner': -0.20, 'intermediate': -0.10, 'advanced': -0.05},
'aggressive': {'beginner': -0.25, 'intermediate': -0.15, 'advanced': -0.10}
}
# 友善特徵評估
friendly_traits = {
'friendly': {'beginner': 0.10, 'intermediate': 0.05, 'advanced': 0},
'gentle': {'beginner': 0.10, 'intermediate': 0.05, 'advanced': 0},
'easy to train': {'beginner': 0.15, 'intermediate': 0.10, 'advanced': 0.05}
}
# 計算特徵分數
for trait, penalties in difficult_traits.items():
if trait in temp:
score += penalties[exp_level]
for trait, bonuses in friendly_traits.items():
if trait in temp:
score += bonuses[exp_level]
return score
temperament_adjustment = evaluate_temperament(temperament, user_prefs.experience_level)
# 健康問題評估
def evaluate_health_needs(health: str, exp_level: str) -> float:
"""評估健康問題的照護難度"""
score = 0
serious_conditions = ['hip dysplasia', 'heart disease', 'cancer']
moderate_conditions = ['allergies', 'skin problems', 'ear infections']
# 根據經驗等級調整健康問題的影響
health_impact = {
'beginner': {'serious': -0.20, 'moderate': -0.10},
'intermediate': {'serious': -0.15, 'moderate': -0.05},
'advanced': {'serious': -0.10, 'moderate': -0.03}
}
for condition in serious_conditions:
if condition in health:
score += health_impact[exp_level]['serious']
for condition in moderate_conditions:
if condition in health:
score += health_impact[exp_level]['moderate']
return score
health_adjustment = evaluate_health_needs(health_issues, user_prefs.experience_level)
# 家庭環境考量
family_adjustment = 0
if user_prefs.has_children:
if user_prefs.children_age == 'toddler':
if user_prefs.experience_level == 'beginner':
family_adjustment -= 0.15
elif user_prefs.experience_level == 'intermediate':
family_adjustment -= 0.10
elif user_prefs.children_age == 'school_age':
if user_prefs.experience_level == 'beginner':
family_adjustment -= 0.10
# 生活方式匹配度
lifestyle_adjustments = {
'sedentary': -0.10 if care_level == 'HIGH' else 0,
'moderate': 0,
'active': 0.10 if care_level in ['HIGH', 'MODERATE'] else 0
}
lifestyle_adjustment = lifestyle_adjustments[user_prefs.lifestyle_activity]
# 整合所有評分因素
final_score = base_score + time_adjustment + temperament_adjustment + \
health_adjustment + family_adjustment + lifestyle_adjustment
# 確保最終分數在合理範圍內
return max(0.15, min(1.0, final_score))
def calculate_health_score(breed_name: str, user_prefs: UserPreferences) -> float:
"""
計算品種健康分數,加強健康問題的影響力和與使用者敏感度的連結
重要改進:
1. 根據使用者的健康敏感度調整分數
2. 更嚴格的健康問題評估
3. 考慮多重健康問題的累積效應
4. 加入遺傳疾病的特別考量
"""
if breed_name not in breed_health_info:
return 0.5
health_notes = breed_health_info[breed_name]['health_notes'].lower()
# 嚴重健康問題 - 加重扣分
severe_conditions = {
'hip dysplasia': -0.25, # 髖關節發育不良,影響生活品質
'heart disease': -0.25, # 心臟疾病,需要長期治療
'progressive retinal atrophy': -0.20, # 進行性視網膜萎縮,導致失明
'bloat': -0.22, # 胃扭轉,致命風險
'epilepsy': -0.20, # 癲癇,需要長期藥物控制
'degenerative myelopathy': -0.20, # 脊髓退化,影響行動能力
'von willebrand disease': -0.18 # 血液凝固障礙
}
# 中度健康問題 - 適度扣分
moderate_conditions = {
'allergies': -0.12, # 過敏問題,需要持續關注
'eye problems': -0.15, # 眼睛問題,可能需要手術
'joint problems': -0.15, # 關節問題,影響運動能力
'hypothyroidism': -0.12, # 甲狀腺功能低下,需要藥物治療
'ear infections': -0.10, # 耳道感染,需要定期清理
'skin issues': -0.12 # 皮膚問題,需要特殊護理
}
# 輕微健康問題 - 輕微扣分
minor_conditions = {
'dental issues': -0.08, # 牙齒問題,需要定期護理
'weight gain tendency': -0.08, # 易胖體質,需要控制飲食
'minor allergies': -0.06, # 輕微過敏,可控制
'seasonal allergies': -0.06 # 季節性過敏
}
# 計算基礎健康分數
health_score = 1.0
# 健康問題累積效應計算
condition_counts = {
'severe': 0,
'moderate': 0,
'minor': 0
}
# 計算各等級健康問題的數量和影響
for condition, penalty in severe_conditions.items():
if condition in health_notes:
health_score += penalty
condition_counts['severe'] += 1
for condition, penalty in moderate_conditions.items():
if condition in health_notes:
health_score += penalty
condition_counts['moderate'] += 1
for condition, penalty in minor_conditions.items():
if condition in health_notes:
health_score += penalty
condition_counts['minor'] += 1
# 多重問題的額外懲罰(累積效應)
if condition_counts['severe'] > 1:
health_score *= (0.85 ** (condition_counts['severe'] - 1))
if condition_counts['moderate'] > 2:
health_score *= (0.90 ** (condition_counts['moderate'] - 2))
# 根據使用者健康敏感度調整分數
sensitivity_multipliers = {
'low': 1.1, # 較不在意健康問題
'medium': 1.0, # 標準評估
'high': 0.85 # 非常注重健康問題
}
health_score *= sensitivity_multipliers.get(user_prefs.health_sensitivity, 1.0)
# 壽命影響評估
try:
lifespan = breed_health_info[breed_name].get('average_lifespan', '10-12')
years = float(lifespan.split('-')[0])
if years < 8:
health_score *= 0.85 # 短壽命顯著降低分數
elif years < 10:
health_score *= 0.92 # 較短壽命輕微降低分數
elif years > 13:
health_score *= 1.1 # 長壽命適度加分
except:
pass
# 特殊健康優勢
if 'generally healthy' in health_notes or 'hardy breed' in health_notes:
health_score *= 1.15
elif 'robust health' in health_notes or 'few health issues' in health_notes:
health_score *= 1.1
# 確保分數在合理範圍內,但允許更大的分數差異
return max(0.1, min(1.0, health_score))
# def calculate_noise_score(breed_name: str, user_prefs: UserPreferences) -> float:
# """
# 計算品種噪音分數,特別加強噪音程度與生活環境的關聯性評估
# """
# if breed_name not in breed_noise_info:
# return 0.5
# noise_info = breed_noise_info[breed_name]
# noise_level = noise_info['noise_level'].lower()
# noise_notes = noise_info['noise_notes'].lower()
# # 重新設計基礎噪音分數矩陣,考慮不同情境下的接受度
# base_scores = {
# 'low': {
# 'low': 1.0, # 安靜的狗對低容忍完美匹配
# 'medium': 0.95, # 安靜的狗對一般容忍很好
# 'high': 0.90 # 安靜的狗對高容忍當然可以
# },
# 'medium': {
# 'low': 0.60, # 一般吠叫對低容忍較困難
# 'medium': 0.90, # 一般吠叫對一般容忍可接受
# 'high': 0.95 # 一般吠叫對高容忍很好
# },
# 'high': {
# 'low': 0.25, # 愛叫的狗對低容忍極不適合
# 'medium': 0.65, # 愛叫的狗對一般容忍有挑戰
# 'high': 0.90 # 愛叫的狗對高容忍可以接受
# },
# 'varies': {
# 'low': 0.50, # 不確定的情況對低容忍風險較大
# 'medium': 0.75, # 不確定的情況對一般容忍可嘗試
# 'high': 0.85 # 不確定的情況對高容忍問題較小
# }
# }
# # 取得基礎分數
# base_score = base_scores.get(noise_level, {'low': 0.6, 'medium': 0.75, 'high': 0.85})[user_prefs.noise_tolerance]
# # 吠叫原因評估,根據環境調整懲罰程度
# barking_penalties = {
# 'separation anxiety': {
# 'apartment': -0.30, # 在公寓對鄰居影響更大
# 'house_small': -0.25,
# 'house_large': -0.20
# },
# 'excessive barking': {
# 'apartment': -0.25,
# 'house_small': -0.20,
# 'house_large': -0.15
# },
# 'territorial': {
# 'apartment': -0.20, # 在公寓更容易被觸發
# 'house_small': -0.15,
# 'house_large': -0.10
# },
# 'alert barking': {
# 'apartment': -0.15, # 公寓環境刺激較多
# 'house_small': -0.10,
# 'house_large': -0.08
# },
# 'attention seeking': {
# 'apartment': -0.15,
# 'house_small': -0.12,
# 'house_large': -0.10
# }
# }
# # 計算環境相關的吠叫懲罰
# living_space = user_prefs.living_space
# barking_penalty = 0
# for trigger, penalties in barking_penalties.items():
# if trigger in noise_notes:
# barking_penalty += penalties.get(living_space, -0.15)
# # 特殊情況評估
# special_adjustments = 0
# if user_prefs.has_children:
# # 孩童年齡相關調整
# child_age_adjustments = {
# 'toddler': {
# 'high': -0.20, # 幼童對吵鬧更敏感
# 'medium': -0.15,
# 'low': -0.05
# },
# 'school_age': {
# 'high': -0.15,
# 'medium': -0.10,
# 'low': -0.05
# },
# 'teenager': {
# 'high': -0.10,
# 'medium': -0.05,
# 'low': -0.02
# }
# }
# # 根據孩童年齡和噪音等級調整
# age_adj = child_age_adjustments.get(user_prefs.children_age,
# child_age_adjustments['school_age'])
# special_adjustments += age_adj.get(noise_level, -0.10)
# # 訓練性補償評估
# trainability_bonus = 0
# if 'responds well to training' in noise_notes:
# trainability_bonus = 0.12
# elif 'can be trained' in noise_notes:
# trainability_bonus = 0.08
# elif 'difficult to train' in noise_notes:
# trainability_bonus = 0.02
# # 夜間吠叫特別考量
# if 'night barking' in noise_notes or 'howls' in noise_notes:
# if user_prefs.living_space == 'apartment':
# special_adjustments -= 0.15
# elif user_prefs.living_space == 'house_small':
# special_adjustments -= 0.10
# else:
# special_adjustments -= 0.05
# # 計算最終分數,確保更大的分數範圍
# final_score = base_score + barking_penalty + special_adjustments + trainability_bonus
# return max(0.1, min(1.0, final_score))
def calculate_noise_score(breed_info: dict, user_prefs: UserPreferences) -> float:
"""
計算品種噪音特性與使用者需求的匹配分數
這個函數建立了一個細緻的噪音評估系統,考慮多個關鍵因素:
1. 品種的基本吠叫傾向
2. 居住環境對噪音的敏感度
3. 吠叫的情境和原因
4. 鄰居影響的考量
5. 家庭成員的噪音承受度
6. 訓練可能性的評估
特別注意:
- 公寓環境的嚴格標準
- 有幼童時的特殊考量
- 獨處時間的影響
- 品種的可訓練性
Parameters:
-----------
breed_info: 包含品種特性的字典,包括吠叫傾向和訓練難度
user_prefs: 使用者偏好設定,包含噪音容忍度和環境因素
Returns:
--------
float: 0.0-1.0 之間的匹配分數,分數越高表示噪音特性越符合需求
"""
# 提取基本資訊
noise_level = breed_info.get('Noise Level', 'MODERATE').upper()
barking_tendency = breed_info.get('Barking Tendency', 'MODERATE').upper()
trainability = breed_info.get('Trainability', 'MODERATE').upper()
temperament = breed_info.get('Temperament', '').lower()
# 基礎噪音評分矩陣 - 考慮環境和噪音容忍度
base_noise_scores = {
"LOW": {
"apartment": {
"low": 1.0, # 安靜的狗在公寓最理想
"medium": 0.95,
"high": 0.90
},
"house_small": {
"low": 0.95,
"medium": 0.90,
"high": 0.85
},
"house_large": {
"low": 0.90,
"medium": 0.85,
"high": 0.80 # 太安靜可能不夠警戒
}
},
"MODERATE": {
"apartment": {
"low": 0.60,
"medium": 0.80,
"high": 0.85
},
"house_small": {
"low": 0.70,
"medium": 0.85,
"high": 0.90
},
"house_large": {
"low": 0.75,
"medium": 0.90,
"high": 0.95
}
},
"HIGH": {
"apartment": {
"low": 0.20, # 吵鬧的狗在公寓極不適合
"medium": 0.40,
"high": 0.60
},
"house_small": {
"low": 0.30,
"medium": 0.50,
"high": 0.70
},
"house_large": {
"low": 0.40,
"medium": 0.60,
"high": 0.80
}
}
}
# 取得基礎噪音分數
base_score = base_noise_scores.get(noise_level, base_noise_scores["MODERATE"])\
[user_prefs.living_space][user_prefs.noise_tolerance]
# 吠叫情境評估
def evaluate_barking_context(temp: str, living_space: str) -> float:
"""評估不同情境下的吠叫問題嚴重度"""
context_score = 0
# 不同吠叫原因的權重
barking_contexts = {
'separation anxiety': {
'apartment': -0.25,
'house_small': -0.20,
'house_large': -0.15
},
'territorial': {
'apartment': -0.20,
'house_small': -0.15,
'house_large': -0.10
},
'alert barking': {
'apartment': -0.15,
'house_small': -0.10,
'house_large': -0.05
},
'attention seeking': {
'apartment': -0.15,
'house_small': -0.10,
'house_large': -0.08
}
}
for context, penalties in barking_contexts.items():
if context in temp:
context_score += penalties[living_space]
return context_score
# 計算吠叫情境的影響
barking_context_adjustment = evaluate_barking_context(temperament, user_prefs.living_space)
# 訓練可能性評估
trainability_adjustments = {
"HIGH": 0.10, # 容易訓練可以改善吠叫問題
"MODERATE": 0.05,
"LOW": -0.05 # 難以訓練則較難改善
}
trainability_adjustment = trainability_adjustments.get(trainability, 0)
# 家庭環境考量
family_adjustment = 0
if user_prefs.has_children:
child_age_factors = {
'toddler': -0.20, # 幼童需要安靜環境
'school_age': -0.15,
'teenager': -0.10
}
family_adjustment = child_age_factors.get(user_prefs.children_age, -0.15)
# 根據噪音等級調整影響程度
if noise_level == "HIGH":
family_adjustment *= 1.5
elif noise_level == "LOW":
family_adjustment *= 0.5
# 獨處時間的影響
alone_time_adjustment = 0
if user_prefs.home_alone_time > 6:
if 'separation anxiety' in temperament or noise_level == "HIGH":
alone_time_adjustment = -0.15
elif noise_level == "MODERATE":
alone_time_adjustment = -0.10
# 鄰居影響評估(特別是公寓環境)
neighbor_adjustment = 0
if user_prefs.living_space == "apartment":
if noise_level == "HIGH":
neighbor_adjustment = -0.15
elif noise_level == "MODERATE":
neighbor_adjustment = -0.10
# 樓層因素
if user_prefs.living_floor > 1:
neighbor_adjustment -= min(0.10, (user_prefs.living_floor - 1) * 0.02)
# 整合所有評分因素
final_score = base_score + barking_context_adjustment + trainability_adjustment + \
family_adjustment + alone_time_adjustment + neighbor_adjustment
# 確保最終分數在合理範圍內
return max(0.15, min(1.0, final_score))
def calculate_environmental_fit(breed_info: dict, user_prefs: UserPreferences) -> float:
"""計算品種與環境的適應性加成"""
adaptability_score = 0.0
description = breed_info.get('Description', '').lower()
temperament = breed_info.get('Temperament', '').lower()
# 環境適應性評估
if user_prefs.living_space == 'apartment':
if 'adaptable' in temperament or 'apartment' in description:
adaptability_score += 0.1
if breed_info.get('Size') == 'Small':
adaptability_score += 0.05
elif user_prefs.living_space == 'house_large':
if 'active' in temperament or 'energetic' in description:
adaptability_score += 0.1
# 氣候適應性
if user_prefs.climate in description or user_prefs.climate in temperament:
adaptability_score += 0.05
return min(0.2, adaptability_score)
def calculate_breed_matching(breed_info: dict, user_prefs: UserPreferences) -> dict:
"""計算品種的整體評分與匹配度"""
try:
print("\n=== 開始計算品種相容性分數 ===")
print(f"處理品種: {breed_info.get('Breed', 'Unknown')}")
print(f"品種信息: {breed_info}")
print(f"使用者偏好: {vars(user_prefs)}")
# 計算所有基礎分數並整合到字典中
scores = {
'space': calculate_space_score(
breed_info['Size'],
user_prefs.living_space,
user_prefs.yard_access != 'no_yard',
breed_info.get('Exercise Needs', 'Moderate')
),
'exercise': calculate_exercise_score(
breed_info.get('Exercise Needs', 'Moderate'),
user_prefs.exercise_time,
user_prefs.exercise_type
),
'grooming': calculate_grooming_score(
breed_info.get('Grooming Needs', 'Moderate'),
user_prefs.grooming_commitment.lower(),
breed_info['Size']
),
'experience': calculate_experience_score(
breed_info.get('Care Level', 'Moderate'),
user_prefs.experience_level,
breed_info.get('Temperament', '')
),
'health': calculate_health_score(
breed_info.get('Breed', ''),
user_prefs
),
'noise': calculate_noise_score(
breed_info.get('Breed', ''),
user_prefs
)
}
# 計算最終相容性分數
final_score = calculate_compatibility_score(scores, user_prefs, breed_info)
# 計算環境適應性加成
adaptability_bonus = calculate_environmental_fit(breed_info, user_prefs)
# 整合最終分數和加成
final_score = (final_score * 0.9) + (adaptability_bonus * 0.1)
final_score = amplify_score_extreme(final_score)
# 更新並返回完整的評分結果
scores.update({
'overall': final_score,
'adaptability_bonus': adaptability_bonus
})
return scores
except Exception as e:
print(f"\n!!!!! 發生嚴重錯誤 !!!!!")
print(f"錯誤類型: {type(e).__name__}")
print(f"錯誤訊息: {str(e)}")
print(f"完整錯誤追蹤:")
print(traceback.format_exc())
return {k: 0.6 for k in ['space', 'exercise', 'grooming', 'experience', 'health', 'noise', 'overall']}
# def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
# """
# 改進的品種相容性評分系統
# 通過更細緻的特徵評估和動態權重調整,自然產生分數差異
# """
# # 評估關鍵特徵的匹配度,使用更極端的調整係數
# def evaluate_key_features():
# # 空間適配性評估
# space_multiplier = 1.0
# if user_prefs.living_space == 'apartment':
# if breed_info['Size'] == 'Giant':
# space_multiplier = 0.3 # 嚴重不適合
# elif breed_info['Size'] == 'Large':
# space_multiplier = 0.4 # 明顯不適合
# elif breed_info['Size'] == 'Small':
# space_multiplier = 1.4 # 明顯優勢
# # 運動需求評估
# exercise_multiplier = 1.0
# exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
# if exercise_needs == 'VERY HIGH':
# if user_prefs.exercise_time < 60:
# exercise_multiplier = 0.3 # 嚴重不足
# elif user_prefs.exercise_time > 150:
# exercise_multiplier = 1.5 # 完美匹配
# elif exercise_needs == 'LOW' and user_prefs.exercise_time > 150:
# exercise_multiplier = 0.5 # 運動過度
# return space_multiplier, exercise_multiplier
# # 計算經驗匹配度
# def evaluate_experience():
# exp_multiplier = 1.0
# care_level = breed_info.get('Care Level', 'MODERATE')
# if care_level == 'High':
# if user_prefs.experience_level == 'beginner':
# exp_multiplier = 0.4
# elif user_prefs.experience_level == 'advanced':
# exp_multiplier = 1.3
# elif care_level == 'Low':
# if user_prefs.experience_level == 'advanced':
# exp_multiplier = 0.9 # 略微降低評分,因為可能不夠有挑戰性
# return exp_multiplier
# # 取得特徵調整係數
# space_mult, exercise_mult = evaluate_key_features()
# exp_mult = evaluate_experience()
# # 調整基礎分數
# adjusted_scores = {
# 'space': scores['space'] * space_mult,
# 'exercise': scores['exercise'] * exercise_mult,
# 'experience': scores['experience'] * exp_mult,
# 'grooming': scores['grooming'],
# 'health': scores['health'],
# 'noise': scores['noise']
# }
# # 計算加權平均,關鍵特徵佔更大權重
# weights = {
# 'space': 0.35,
# 'exercise': 0.30,
# 'experience': 0.20,
# 'grooming': 0.15,
# 'health': 0.10,
# 'noise': 0.10
# }
# # 動態調整權重
# if user_prefs.living_space == 'apartment':
# weights['space'] *= 1.5
# weights['noise'] *= 1.3
# if abs(user_prefs.exercise_time - 120) > 60: # 運動時間極端情況
# weights['exercise'] *= 1.4
# # 正規化權重
# total_weight = sum(weights.values())
# normalized_weights = {k: v/total_weight for k, v in weights.items()}
# # 計算最終分數
# final_score = sum(adjusted_scores[k] * normalized_weights[k] for k in scores.keys())
# # 品種特性加成
# breed_bonus = calculate_breed_bonus(breed_info, user_prefs)
# # 整合最終分數,保持在0-1範圍內
# return min(1.0, max(0.0, (final_score * 0.85) + (breed_bonus * 0.15)))
# def amplify_score_extreme(score: float) -> float:
# """
# 改進的分數轉換函數
# 提供更大的分數範圍和更明顯的差異
# 轉換邏輯:
# - 極差匹配 (0.0-0.3) -> 60-68%
# - 較差匹配 (0.3-0.5) -> 68-75%
# - 中等匹配 (0.5-0.7) -> 75-85%
# - 良好匹配 (0.7-0.85) -> 85-92%
# - 優秀匹配 (0.85-1.0) -> 92-95%
# """
# if score < 0.3:
# # 極差匹配:快速線性增長
# return 0.60 + (score / 0.3) * 0.08
# elif score < 0.5:
# # 較差匹配:緩慢增長
# position = (score - 0.3) / 0.2
# return 0.68 + position * 0.07
# elif score < 0.7:
# # 中等匹配:穩定線性增長
# position = (score - 0.5) / 0.2
# return 0.75 + position * 0.10
# elif score < 0.85:
# # 良好匹配:加速增長
# position = (score - 0.7) / 0.15
# return 0.85 + position * 0.07
# else:
# # 優秀匹配:最後衝刺
# position = (score - 0.85) / 0.15
# return 0.92 + position * 0.03
def calculate_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
"""
計算品種與使用者的整體相容性分數
這是推薦系統的核心評分函數,負責:
1. 智能整合各面向評分
2. 動態調整評分權重
3. 處理關鍵條件的優先級
4. 產生最終的匹配分數
評分策略:
- 基礎分數:由各項指標的加權平均獲得
- 動態權重:根據用戶情況動態調整各項權重
- 關鍵條件:某些條件不滿足會顯著降低總分
- 加成系統:特殊匹配會提供額外加分
Parameters:
-----------
scores: 包含各項評分的字典
user_prefs: 使用者偏好設定
breed_info: 品種特性信息
Returns:
--------
float: 60.0-95.0 之間的最終匹配分數
"""
def calculate_dynamic_weights() -> dict:
"""計算動態權重分配"""
# 基礎權重設定
weights = {
'space': 0.20,
'exercise': 0.20,
'experience': 0.15,
'grooming': 0.15,
'health': 0.15,
'noise': 0.15
}
# 公寓住戶權重調整
if user_prefs.living_space == "apartment":
weights['space'] *= 1.3
weights['noise'] *= 1.3
weights['exercise'] *= 0.8
# 有幼童時的權重調整
if user_prefs.has_children and user_prefs.children_age == 'toddler':
weights['experience'] *= 1.3
weights['noise'] *= 1.2
weights['health'] *= 1.2
# 新手飼主的權重調整
if user_prefs.experience_level == 'beginner':
weights['experience'] *= 1.4
weights['health'] *= 1.2
weights['grooming'] *= 1.2
# 健康敏感度的權重調整
if user_prefs.health_sensitivity == 'high':
weights['health'] *= 1.3
# 運動時間極端情況的權重調整
if abs(user_prefs.exercise_time - 120) > 60:
weights['exercise'] *= 1.3
# 正規化權重
total = sum(weights.values())
return {k: v/total for k, v in weights.items()}
def calculate_critical_factors() -> float:
"""評估關鍵因素的影響"""
critical_score = 1.0
# 空間關鍵條件
if user_prefs.living_space == "apartment":
if breed_info['Size'] == 'Giant':
critical_score *= 0.7
elif breed_info['Size'] == 'Large':
critical_score *= 0.8
# 運動需求關鍵條件
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
if exercise_needs == 'VERY HIGH' and user_prefs.exercise_time < 60:
critical_score *= 0.75
elif exercise_needs == 'HIGH' and user_prefs.exercise_time < 45:
critical_score *= 0.8
# 新手飼主關鍵條件
if user_prefs.experience_level == 'beginner':
if 'aggressive' in breed_info.get('Temperament', '').lower():
critical_score *= 0.7
elif 'dominant' in breed_info.get('Temperament', '').lower():
critical_score *= 0.8
# 噪音關鍵條件
if user_prefs.living_space == "apartment" and \
breed_info.get('Noise Level', 'MODERATE').upper() == 'HIGH' and \
user_prefs.noise_tolerance == 'low':
critical_score *= 0.7
return critical_score
def calculate_bonus_factors() -> float:
"""計算額外加分因素"""
bonus = 1.0
temperament = breed_info.get('Temperament', '').lower()
# 完美匹配加分
perfect_matches = 0
for score in scores.values():
if score > 0.9:
perfect_matches += 1
if perfect_matches >= 3:
bonus += 0.05
# 特殊匹配加分
if user_prefs.has_children and 'good with children' in temperament:
bonus += 0.03
if user_prefs.living_space == "apartment" and 'adaptable' in temperament:
bonus += 0.03
if user_prefs.experience_level == 'beginner' and 'easy to train' in temperament:
bonus += 0.03
return min(1.15, bonus)
# 計算動態權重
weights = calculate_dynamic_weights()
# 計算基礎加權分數
base_score = sum(scores[k] * weights[k] for k in scores.keys())
# 應用關鍵因素
critical_factor = calculate_critical_factors()
# 計算加分
bonus_factor = calculate_bonus_factors()
# 計算最終原始分數
raw_score = base_score * critical_factor * bonus_factor
# 轉換為最終分數(60-95範圍)
final_score = 60 + (raw_score * 35)
# 確保分數在合理範圍內並保留兩位小數
return round(max(60.0, min(95.0, final_score)), 2)
def amplify_score_extreme(score: float) -> float:
"""
將原始相容性分數(0-1)轉換為最終評分(60-95)
這個函數負責:
1. 將內部計算的原始分數轉換為更有意義的最終分數
2. 確保分數分布更自然且有區別性
3. 突出極佳和極差的匹配
4. 避免分數過度集中在中間區域
轉換策略:
- 極佳匹配(0.85-1.0):轉換為 90-95 分
- 優良匹配(0.70-0.85):轉換為 85-90 分
- 良好匹配(0.55-0.70):轉換為 75-85 分
- 一般匹配(0.40-0.55):轉換為 70-75 分
- 勉強匹配(0.25-0.40):轉換為 65-70 分
- 不推薦匹配(0-0.25):轉換為 60-65 分
Parameters:
-----------
score: 原始相容性分數(0.0-1.0)
Returns:
--------
float: 轉換後的最終分數(60.0-95.0)
"""
# 使用分段函數進行更自然的轉換
if score >= 0.85:
# 極佳匹配:90-95分
position = (score - 0.85) / 0.15
return 90.0 + (position * 5.0)
elif score >= 0.70:
# 優良匹配:85-90分
position = (score - 0.70) / 0.15
return 85.0 + (position * 5.0)
elif score >= 0.55:
# 良好匹配:75-85分
position = (score - 0.55) / 0.15
return 75.0 + (position * 10.0)
elif score >= 0.40:
# 一般匹配:70-75分
position = (score - 0.40) / 0.15
return 70.0 + (position * 5.0)
elif score >= 0.25:
# 勉強匹配:65-70分
position = (score - 0.25) / 0.15
return 65.0 + (position * 5.0)
else:
# 不推薦匹配:60-65分
position = score / 0.25
return 60.0 + (position * 5.0) |