Spaces:
Running
Running
File size: 6,893 Bytes
c8763bd 4cfc121 c8763bd e747f4e 996d4ed e747f4e c8763bd d262fb3 708b21b c8763bd dcfabfb e02ef37 e747f4e dcfabfb 4cfc121 dcfabfb deb7c38 6640b32 efc3d5b d262fb3 c8763bd a18f8de e2c5bda efc3d5b 930b7c1 8e8c463 930b7c1 8e8c463 e747f4e 930b7c1 efc3d5b 930b7c1 8e8c463 efc3d5b 930b7c1 efc3d5b 930b7c1 efc3d5b 930b7c1 c8763bd 930b7c1 c8763bd 8e8c463 6bc8c31 8e8c463 8e785e9 8e8c463 4cfc121 d8fa097 8e785e9 8e8c463 5236273 8e8c463 4cfc121 d3abea5 5643bcb 4cfc121 5643bcb 8e8c463 c8763bd 8e8c463 c8763bd 8e8c463 c8763bd 8e8c463 8e785e9 f208a6d e747f4e 8e8c463 f208a6d 4e5004d e747f4e 4e5004d af2159b 8e8c463 4e5004d e747f4e 4e5004d 8e8c463 4e5004d f208a6d e747f4e 8e8c463 f208a6d 02f02af b075f8f 8e785e9 67cbded c8763bd 8e8c463 708b21b a18f8de 8e785e9 708b21b a18f8de 708b21b a18f8de 01d6a6d 8e785e9 4cfc121 01d6a6d a18f8de 1be6060 4cfc121 01d6a6d 1be6060 4cfc121 9dc4521 00642fb d262fb3 8e8c463 d262fb3 c8763bd 5aacd58 c8763bd d262fb3 c8763bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import os
import gradio as gr
import pandas as pd
import plotly.express as px
from apscheduler.schedulers.background import BackgroundScheduler
from src.assets.text_content import TITLE, INTRODUCTION_TEXT, SINGLE_A100_TEXT, CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT
from src.utils import restart_space, load_dataset_repo, make_clickable_model, make_clickable_score, submit_query
from src.assets.css_html_js import custom_css
LLM_PERF_LEADERBOARD_REPO = "optimum/llm-perf-leaderboard"
LLM_PERF_DATASET_REPO = "optimum/llm-perf-dataset"
OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN", None)
COLUMNS_MAPPING = {
"model": "Model π€",
"backend.name": "Backend π",
"backend.torch_dtype": "Datatype π₯",
"forward.peak_memory(MB)": "Peak Memory (MB) β¬οΈ",
"generate.throughput(tokens/s)": "Throughput (tokens/s) β¬οΈ",
"h4_score": "Average H4 Score β¬οΈ",
}
COLUMNS_DATATYPES = ["markdown", "str", "str", "number", "number", "markdown"]
SORTING_COLUMN = ["Throughput (tokens/s) β¬οΈ"]
llm_perf_dataset_repo = load_dataset_repo(LLM_PERF_DATASET_REPO, OPTIMUM_TOKEN)
def get_benchmark_df(benchmark):
if llm_perf_dataset_repo:
llm_perf_dataset_repo.git_pull()
# load
bench_df = pd.read_csv(
f"./llm-perf-dataset/reports/{benchmark}.csv")
scores_df = pd.read_csv(
f"./llm-perf-dataset/reports/additional_data.csv")
bench_df = bench_df.merge(scores_df, on="model", how="left")
# preprocess
bench_df["model"] = bench_df["model"].apply(make_clickable_model)
bench_df["h4_score"] = bench_df["h4_score"].apply(make_clickable_score)
# filter
bench_df = bench_df[list(COLUMNS_MAPPING.keys())]
# rename
bench_df.rename(columns=COLUMNS_MAPPING, inplace=True)
# sort
bench_df.sort_values(by=SORTING_COLUMN, ascending=False, inplace=True)
return bench_df
# Dataframes
single_A100_df = get_benchmark_df(benchmark="1xA100-80GB")
def get_benchmark_plot(benchmark):
if llm_perf_dataset_repo:
llm_perf_dataset_repo.git_pull()
# load
bench_df = pd.read_csv(
f"./llm-perf-dataset/reports/{benchmark}.csv")
scores_df = pd.read_csv(
f"./llm-perf-dataset/reports/additional_data.csv")
bench_df = bench_df.merge(scores_df, on="model", how="left")
bench_df = bench_df[bench_df["generate.latency(s)"] < 100]
fig = px.scatter(
bench_df, x="h4_score", y="generate.latency(s)",
color='model_type', symbol='backend.name', size='forward.peak_memory(MB)',
custom_data=['model', 'backend.name', 'backend.torch_dtype',
'forward.peak_memory(MB)', 'generate.throughput(tokens/s)'],
)
fig.update_layout(
title={
'text': "Model Score vs. Latency vs. Memory",
'y': 0.95, 'x': 0.5,
'xanchor': 'center',
'yanchor': 'top'
},
xaxis_title="Average H4 Score",
yaxis_title="Latency per 1000 Tokens (s)",
legend_title="Model Type, Backend",
width=1200,
height=600,
)
fig.update_traces(
hovertemplate="<br>".join([
"Model: %{customdata[0]}",
"Backend: %{customdata[1]}",
"Datatype: %{customdata[2]}",
"Peak Memory (MB): %{customdata[3]}",
"Throughput (tokens/s): %{customdata[4]}",
"Latency per 1000 Tokens (s): %{y}",
"Average H4 Score: %{x}"
])
)
return fig
# Plots
single_A100_plot = get_benchmark_plot(benchmark="1xA100-80GB")
# Demo interface
demo = gr.Blocks(css=custom_css)
with demo:
# leaderboard title
gr.HTML(TITLE)
# introduction text
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
# control panel title
gr.HTML("<h2>Control Panel ποΈ</h2>")
# control panel interface
with gr.Row():
search_bar = gr.Textbox(
label="Model π€",
info="π Search for a model name",
elem_id="search-bar",
)
backend_checkboxes = gr.CheckboxGroup(
label="Backends π",
choices=["pytorch", "onnxruntime"],
value=["pytorch", "onnxruntime"],
info="βοΈ Select the backends",
elem_id="backend-checkboxes",
)
datatype_checkboxes = gr.CheckboxGroup(
label="Datatypes π₯",
choices=["float32", "float16"],
value=["float32", "float16"],
info="βοΈ Select the load datatypes",
elem_id="datatype-checkboxes",
)
threshold_slider = gr.Slider(
label="Average H4 Score π",
info="lter by minimum average H4 score",
value=0.0,
elem_id="threshold-slider",
)
with gr.Row():
submit_button = gr.Button(
value="Submit π",
elem_id="submit-button",
)
# leaderboard tabs
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π₯οΈ A100-80GB Leaderboard π", id=0):
gr.HTML(SINGLE_A100_TEXT)
# Original leaderboard table
single_A100_leaderboard = gr.components.Dataframe(
value=single_A100_df,
datatype=COLUMNS_DATATYPES,
headers=list(COLUMNS_MAPPING.values()),
elem_id="1xA100-table",
)
# Dummy dataframe for search
single_A100_for_search = gr.components.Dataframe(
value=single_A100_df,
datatype=COLUMNS_DATATYPES,
headers=list(COLUMNS_MAPPING.values()),
max_rows=None,
visible=False,
)
submit_button.click(
submit_query,
[
search_bar, backend_checkboxes, datatype_checkboxes, threshold_slider,
single_A100_for_search
],
[single_A100_leaderboard]
)
with gr.TabItem("π₯οΈ A100-80GB Plot π", id=1):
# Original leaderboard plot
gr.HTML(SINGLE_A100_TEXT)
# Original leaderboard plot
single_A100_plotly = gr.components.Plot(
value=single_A100_plot,
elem_id="1xA100-plot",
show_label=False,
)
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
).style(show_copy_button=True)
# Restart space every hour
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=3600,
args=[LLM_PERF_LEADERBOARD_REPO, OPTIMUM_TOKEN])
scheduler.start()
# Launch demo
demo.queue(concurrency_count=40).launch()
|