File size: 7,503 Bytes
bc63b44 194731c d86b87f a1b0975 f4325ab 194731c 069bfa6 cab69d9 b529f79 069bfa6 379c443 b994095 f916b82 069bfa6 d1da5ff cab69d9 069bfa6 b994095 069bfa6 194731c b994095 e6614b8 194731c 8504394 e4621e6 8504394 e4621e6 8504394 66722b9 8504394 e6614b8 069bfa6 1888d7d 069bfa6 f4325ab 069bfa6 b994095 069bfa6 915a0f9 069bfa6 915a0f9 069bfa6 6397229 194731c ac28cc5 194731c ac28cc5 194731c d1da5ff 194731c 069bfa6 194731c d1da5ff 194731c c17c736 038610e 3c24b96 cab69d9 5a38614 194731c ac28cc5 172d00c 194731c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
import spaces
import gradio as gr
from transformers import Trainer, TrainingArguments, AutoTokenizer, AutoModelForSeq2SeqLM
from transformers import DataCollatorForSeq2Seq
from datasets import load_dataset, concatenate_datasets, load_from_disk
import traceback
from sklearn.metrics import accuracy_score
import numpy as np
import torch
import os
from huggingface_hub import login
from peft import get_peft_model, LoraConfig
os.environ['HF_HOME'] = '/data/.huggingface'
lora_config = LoraConfig(
r=16, # Rank of the low-rank adaptation
lora_alpha=32, # Scaling factor
lora_dropout=0.1, # Dropout for LoRA layers
bias="none" # Bias handling
)
model = AutoModelForSeq2SeqLM.from_pretrained('google/t5-efficient-tiny-nh8', num_labels=2, force_download=True)
model = get_peft_model(model, lora_config)
model.gradient_checkpointing_enable()
@spaces.GPU(duration=120)
def fine_tune_model(model, dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
try:
torch.cuda.empty_cache()
def compute_metrics(eval_pred):
logits, labels = eval_pred
predictions = np.argmax(logits, axis=1)
accuracy = accuracy_score(labels, predictions)
return {
'eval_accuracy': accuracy,
'eval_loss': eval_pred.loss, # If you want to include loss as well
}
login(api_key.strip())
# Load the model and tokenizer
# Set training arguments
training_args = TrainingArguments(
output_dir='/data/results',
eval_strategy="steps", # Change this to steps
save_strategy='steps',
learning_rate=lr*0.00001,
per_device_train_batch_size=int(batch_size),
per_device_eval_batch_size=int(batch_size),
num_train_epochs=int(num_epochs),
weight_decay=0.01,
gradient_accumulation_steps=int(grad),
max_grad_norm = 1.0,
load_best_model_at_end=True,
metric_for_best_model="accuracy",
greater_is_better=True,
logging_dir='/data/logs',
logging_steps=10,
#push_to_hub=True,
hub_model_id=hub_id.strip(),
fp16=True,
#lr_scheduler_type='cosine',
save_steps=100, # Save checkpoint every 500 steps
save_total_limit=3,
)
# Check if a checkpoint exists and load it
if os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir):
print("Loading model from checkpoint...")
model = AutoModelForSeq2SeqLM.from_pretrained(training_args.output_dir)
max_length = 128
try:
tokenized_train_dataset = load_from_disk(f'/data/{hub_id.strip()}_train_dataset')
tokenized_test_dataset = load_from_disk(f'/data/{hub_id.strip()}_test_dataset')
# Create Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_train_dataset,
eval_dataset=tokenized_test_dataset,
compute_metrics=compute_metrics,
#callbacks=[LoggingCallback()],
)
except:
# Load the dataset
dataset = load_dataset(dataset_name.strip())
tokenizer = AutoTokenizer.from_pretrained('google/t5-efficient-tiny-nh8')
# Tokenize the dataset
def tokenize_function(examples):
# Assuming 'text' is the input and 'target' is the expected output
model_inputs = tokenizer(
examples['text'],
max_length=max_length, # Set to None for dynamic padding
padding=True, # Disable padding here, we will handle it later
truncation=True,
)
# Setup the decoder input IDs (shifted right)
labels = tokenizer(
examples['target'],
max_length=max_length, # Set to None for dynamic padding
padding=True, # Disable padding here, we will handle it later
truncation=True,
text_target=examples['target'] # Use text_target for target text
)
# Add labels to the model inputs
model_inputs["labels"] = labels["input_ids"]
return model_inputs
tokenized_datasets = dataset.map(tokenize_function, batched=True)
tokenized_datasets['train'].save_to_disk(f'/data/{hub_id.strip()}_train_dataset')
tokenized_datasets['test'].save_to_disk(f'/data/{hub_id.strip()}_test_dataset')
# Create Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_datasets['train'],
eval_dataset=tokenized_datasets['test'],
compute_metrics=compute_metrics,
#callbacks=[LoggingCallback()],
)
# Fine-tune the model
trainer.train()
trainer.push_to_hub(commit_message="Training complete!")
except Exception as e:
return f"An error occurred: {str(e)}, TB: {traceback.format_exc()}"
return 'DONE!'#model
'''
# Define Gradio interface
def predict(text):
model = AutoModelForSeq2SeqLM.from_pretrained(model_name.strip(), num_labels=2)
tokenizer = AutoTokenizer.from_pretrained(model_name)
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
outputs = model(inputs)
predictions = outputs.logits.argmax(dim=-1)
return predictions.item()
'''
def run_train(dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
result = fine_tune_model(model, dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad)
return result
# Create Gradio interface
try:
model = AutoModelForSeq2SeqLM.from_pretrained('google/t5-efficient-tiny-nh8'.strip(), num_labels=2, force_download=True)
iface = gr.Interface(
fn=run_train,
inputs=[
gr.Textbox(label="Dataset Name (e.g., 'imdb')"),
gr.Textbox(label="HF hub to push to after training"),
gr.Textbox(label="HF API token"),
gr.Slider(minimum=1, maximum=10, value=3, label="Number of Epochs", step=1),
gr.Slider(minimum=1, maximum=2000, value=1, label="Batch Size", step=1),
gr.Slider(minimum=1, maximum=1000, value=1, label="Learning Rate (e-5)", step=1),
gr.Slider(minimum=1, maximum=100, value=1, label="Gradient accumulation", step=1),
],
outputs="text",
title="Fine-Tune Hugging Face Model",
description="This interface allows you to fine-tune a Hugging Face model on a specified dataset."
)
'''
iface = gr.Interface(
fn=predict,
inputs=[
gr.Textbox(label="Query"),
],
outputs="text",
title="Fine-Tune Hugging Face Model",
description="This interface allows you to test a fine-tune Hugging Face model."
)
'''
# Launch the interface
iface.launch()
except Exception as e:
print(f"An error occurred: {str(e)}, TB: {traceback.format_exc()}")
|