File size: 7,503 Bytes
bc63b44
194731c
d86b87f
a1b0975
f4325ab
194731c
069bfa6
 
 
cab69d9
b529f79
069bfa6
 
379c443
b994095
 
 
 
 
 
 
 
 
 
 
f916b82
069bfa6
d1da5ff
cab69d9
069bfa6
 
 
 
 
 
 
 
 
 
b994095
069bfa6
194731c
b994095
e6614b8
194731c
8504394
 
e4621e6
8504394
 
 
 
 
 
 
 
 
 
 
 
e4621e6
8504394
 
 
 
 
66722b9
8504394
 
e6614b8
069bfa6
 
 
 
1888d7d
069bfa6
 
 
f4325ab
069bfa6
 
 
 
 
 
 
 
 
 
 
 
b994095
069bfa6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
915a0f9
069bfa6
 
 
 
915a0f9
069bfa6
 
 
 
 
 
 
 
 
6397229
194731c
 
 
 
 
 
 
 
 
ac28cc5
 
194731c
 
 
ac28cc5
194731c
d1da5ff
 
 
 
194731c
 
069bfa6
194731c
d1da5ff
194731c
c17c736
 
038610e
3c24b96
cab69d9
5a38614
 
194731c
 
 
 
 
ac28cc5
 
 
 
 
 
 
 
 
 
 
172d00c
 
194731c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import spaces
import gradio as gr
from transformers import Trainer, TrainingArguments, AutoTokenizer, AutoModelForSeq2SeqLM
from transformers import DataCollatorForSeq2Seq
from datasets import load_dataset, concatenate_datasets, load_from_disk
import traceback
from sklearn.metrics import accuracy_score
import numpy as np
import torch

import os
from huggingface_hub import login
from peft import get_peft_model, LoraConfig

os.environ['HF_HOME'] = '/data/.huggingface'

lora_config = LoraConfig(
    r=16,  # Rank of the low-rank adaptation
    lora_alpha=32,  # Scaling factor
    lora_dropout=0.1,  # Dropout for LoRA layers
    bias="none"  # Bias handling
)
model = AutoModelForSeq2SeqLM.from_pretrained('google/t5-efficient-tiny-nh8', num_labels=2, force_download=True)
model = get_peft_model(model, lora_config)
model.gradient_checkpointing_enable()   

@spaces.GPU(duration=120)
def fine_tune_model(model, dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
    try:
        torch.cuda.empty_cache()
        def compute_metrics(eval_pred):
            logits, labels = eval_pred
            predictions = np.argmax(logits, axis=1)
            accuracy = accuracy_score(labels, predictions)
            return {
                'eval_accuracy': accuracy,
                'eval_loss': eval_pred.loss,  # If you want to include loss as well
            }        
        login(api_key.strip())
   
    
        # Load the model and tokenizer
             
        
    
        # Set training arguments
        training_args = TrainingArguments(
            output_dir='/data/results',
            eval_strategy="steps",  # Change this to steps
            save_strategy='steps',
            learning_rate=lr*0.00001,
            per_device_train_batch_size=int(batch_size),
            per_device_eval_batch_size=int(batch_size), 
            num_train_epochs=int(num_epochs),
            weight_decay=0.01,
            gradient_accumulation_steps=int(grad),
            max_grad_norm = 1.0, 
            load_best_model_at_end=True,
            metric_for_best_model="accuracy",
            greater_is_better=True,
            logging_dir='/data/logs',
            logging_steps=10,
            #push_to_hub=True,
            hub_model_id=hub_id.strip(),
            fp16=True,
            #lr_scheduler_type='cosine',
            save_steps=100,  # Save checkpoint every 500 steps
            save_total_limit=3, 
        )
        # Check if a checkpoint exists and load it
        if os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir):
            print("Loading model from checkpoint...")
            model = AutoModelForSeq2SeqLM.from_pretrained(training_args.output_dir)        
    
        max_length = 128
        try:
            tokenized_train_dataset = load_from_disk(f'/data/{hub_id.strip()}_train_dataset')
            tokenized_test_dataset = load_from_disk(f'/data/{hub_id.strip()}_test_dataset')
            
            # Create Trainer
            trainer = Trainer(
                model=model,
                args=training_args,
                train_dataset=tokenized_train_dataset,
                eval_dataset=tokenized_test_dataset,
                compute_metrics=compute_metrics,
                #callbacks=[LoggingCallback()], 
            )            
        except:
            # Load the dataset
            dataset = load_dataset(dataset_name.strip())
            tokenizer = AutoTokenizer.from_pretrained('google/t5-efficient-tiny-nh8')
            # Tokenize the dataset
            def tokenize_function(examples):
                
                # Assuming 'text' is the input and 'target' is the expected output
                model_inputs = tokenizer(
                    examples['text'], 
                    max_length=max_length,  # Set to None for dynamic padding
                    padding=True,     # Disable padding here, we will handle it later
                    truncation=True,
                )
            
                # Setup the decoder input IDs (shifted right)
                labels = tokenizer(
                    examples['target'], 
                    max_length=max_length,  # Set to None for dynamic padding
                    padding=True,     # Disable padding here, we will handle it later
                    truncation=True,
                    text_target=examples['target']  # Use text_target for target text
                )
            
                # Add labels to the model inputs
                model_inputs["labels"] = labels["input_ids"]
                return model_inputs
        
            tokenized_datasets = dataset.map(tokenize_function, batched=True)
            
            tokenized_datasets['train'].save_to_disk(f'/data/{hub_id.strip()}_train_dataset')
            tokenized_datasets['test'].save_to_disk(f'/data/{hub_id.strip()}_test_dataset')
        
            # Create Trainer
            trainer = Trainer(
                model=model,
                args=training_args,
                train_dataset=tokenized_datasets['train'],
                eval_dataset=tokenized_datasets['test'],
                compute_metrics=compute_metrics,
                #callbacks=[LoggingCallback()], 
            )            

        # Fine-tune the model
        trainer.train()
        trainer.push_to_hub(commit_message="Training complete!")
    except Exception as e:
        return f"An error occurred: {str(e)}, TB: {traceback.format_exc()}"
    return 'DONE!'#model
'''
# Define Gradio interface
def predict(text):
    model = AutoModelForSeq2SeqLM.from_pretrained(model_name.strip(), num_labels=2)
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
    outputs = model(inputs)
    predictions = outputs.logits.argmax(dim=-1)
    return predictions.item()
'''

def run_train(dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
    result = fine_tune_model(model, dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad)
    return result
# Create Gradio interface
try:
    model = AutoModelForSeq2SeqLM.from_pretrained('google/t5-efficient-tiny-nh8'.strip(), num_labels=2, force_download=True)
    iface = gr.Interface(
        fn=run_train,
        inputs=[
            gr.Textbox(label="Dataset Name (e.g., 'imdb')"),
            gr.Textbox(label="HF hub to push to after training"),
            gr.Textbox(label="HF API token"),
            gr.Slider(minimum=1, maximum=10, value=3, label="Number of Epochs", step=1),
            gr.Slider(minimum=1, maximum=2000, value=1, label="Batch Size", step=1),
            gr.Slider(minimum=1, maximum=1000, value=1, label="Learning Rate (e-5)", step=1),
            gr.Slider(minimum=1, maximum=100, value=1, label="Gradient accumulation", step=1), 
        ],
        outputs="text",
        title="Fine-Tune Hugging Face Model",
        description="This interface allows you to fine-tune a Hugging Face model on a specified dataset."
    )
    '''
    iface = gr.Interface(
        fn=predict,
        inputs=[
            gr.Textbox(label="Query"),
        ],
        outputs="text",
        title="Fine-Tune Hugging Face Model",
        description="This interface allows you to test a fine-tune Hugging Face model."
    )
    '''
    # Launch the interface
    iface.launch()    
except Exception as e:
    print(f"An error occurred: {str(e)}, TB: {traceback.format_exc()}")