File size: 18,626 Bytes
1e09f14 c892f97 1e09f14 b9c1a41 c892f97 c811726 e090d54 de8a30c 1ffc31e 2f8587a 48ce3b8 2f8587a 6012e5c a8f865e 67d9b84 c892f97 2f8587a c892f97 60adc3e 6012e5c 60adc3e c892f97 2fecb4f 6012e5c 2fecb4f 5698f53 1908a7f 5698f53 c892f97 5ded199 c892f97 2251a51 40ac692 5c0ffc8 1e09f14 b9c1a41 c811726 b9c1a41 c811726 b9c1a41 c811726 b7433f5 d978cd5 c811726 b7308a9 1e09f14 4fe4cfe 1e09f14 d978cd5 5cd4921 d978cd5 b7308a9 1e09f14 5cd4921 1e09f14 5cd4921 c811726 5698f53 c811726 9e5acba 5698f53 dad191d c811726 9e5acba dad191d 62980e4 d978cd5 9e5acba e090d54 c892f97 60adc3e 62980e4 dd5a703 dad191d ba5b7fa c811726 5698f53 9e5acba bb84b1f cdb3e15 bb84b1f 9e5acba dad191d 9e5acba 755a4de dd5a703 c892f97 48ce3b8 5ded199 c892f97 60adc3e c811726 141889f c892f97 c811726 c892f97 2251a51 773af00 1ffc31e 773af00 1ffc31e 2251a51 1ffc31e 773af00 18afe53 773af00 1ffc31e 773af00 6012e5c 773af00 67d9b84 773af00 67d9b84 3a6112d 773af00 18afe53 773af00 1ffc31e 2251a51 1ffc31e 48ce3b8 9d943dd 48ce3b8 9d943dd 48ce3b8 9d943dd 48ce3b8 c892f97 40ac692 c892f97 40ac692 60adc3e 6012e5c c892f97 6012e5c 60adc3e 6012e5c c892f97 60adc3e c892f97 c811726 c892f97 40ac692 c811726 c892f97 c811726 c892f97 60adc3e c892f97 60adc3e c892f97 c811726 c892f97 1b657c1 8c7c97c c536c53 2fecb4f 8c7c97c c892f97 8c7c97c 6012e5c 2fecb4f dad191d c536c53 d06f0ed 2fecb4f 8c7c97c c61a1f8 8c7c97c dad191d 6012e5c dad191d 5698f53 2759d32 5698f53 b282311 5698f53 1908a7f 5698f53 c892f97 40ac692 c892f97 5ded199 c892f97 40ac692 c892f97 c811726 c892f97 5ded199 c892f97 5ded199 c892f97 c811726 c892f97 1b657c1 c892f97 40ac692 c892f97 5ded199 c892f97 c811726 c892f97 5ded199 c892f97 5ded199 c892f97 c811726 c892f97 1b657c1 c892f97 1b657c1 c892f97 40ac692 c892f97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 |
from datetime import datetime, timedelta
import gradio as gr
import pandas as pd
import duckdb
import logging
from tabs.trades import (
prepare_trades,
get_overall_trades,
get_overall_by_market_trades,
get_overall_winning_by_market_trades,
integrated_plot_trades_per_market_by_week_v2,
integrated_plot_winning_trades_per_market_by_week_v2,
)
from tabs.staking import plot_staking_trades_per_market_by_week
from tabs.metrics import (
trade_metric_choices,
tool_metric_choices,
default_trade_metric,
default_tool_metric,
plot_trade_metrics,
get_trade_metrics_text,
)
from tabs.tool_win import (
prepare_tools,
get_tool_winning_rate_by_market,
integrated_plot_tool_winnings_overall_per_market_by_week,
integrated_tool_winnings_by_tool_per_market,
)
from tabs.tool_accuracy import (
plot_tools_weighted_accuracy_rotated_graph,
plot_tools_accuracy_rotated_graph,
compute_weighted_accuracy,
)
from tabs.invalid_markets import (
plot_daily_dist_invalid_trades,
plot_top_invalid_markets,
plotly_daily_nr_invalid_markets,
)
from tabs.error import (
plot_week_error_data_by_market,
plot_error_data_by_market,
get_error_data_by_market,
get_error_data_overall_by_market,
plot_tool_error_data_by_market,
)
from tabs.about import about_olas_predict, about_this_dashboard
from scripts.utils import INC_TOOLS
def get_logger():
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
# stream handler and formatter
stream_handler = logging.StreamHandler()
stream_handler.setLevel(logging.DEBUG)
formatter = logging.Formatter(
"%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
stream_handler.setFormatter(formatter)
logger.addHandler(stream_handler)
return logger
logger = get_logger()
def get_last_one_month_data():
"""
Get the last one month data from the tools.parquet file
"""
logger.info("Getting last one month data")
con = duckdb.connect(":memory:")
one_months_ago = (datetime.now() - timedelta(days=60)).strftime("%Y-%m-%d")
# Query to fetch data from all_trades_profitability.parquet
query2 = f"""
SELECT *
FROM read_parquet('./data/all_trades_profitability.parquet')
WHERE creation_timestamp >= '{one_months_ago}'
"""
df2 = con.execute(query2).fetchdf()
logger.info("Got last one month data from all_trades_profitability.parquet")
query1 = f"""
SELECT *
FROM read_parquet('./data/tools.parquet')
WHERE request_time >= '{one_months_ago}'
"""
df1 = con.execute(query1).fetchdf()
logger.info("Got last one month data from tools.parquet")
con.close()
return df1, df2
def get_all_data():
"""
Get all data from the tools.parquet, tools_accuracy and trades parquet files
"""
logger.info("Getting all data")
con = duckdb.connect(":memory:")
# Query to fetch invalid trades data
query4 = f"""
SELECT *
FROM read_parquet('./data/invalid_trades.parquet')
"""
df4 = con.execute(query4).fetchdf()
# Query to fetch tools accuracy data
query3 = f"""
SELECT *
FROM read_csv('./data/tools_accuracy.csv')
"""
df3 = con.execute(query3).fetchdf()
# Query to fetch data from all_trades_profitability.parquet
query2 = f"""
SELECT *
FROM read_parquet('./data/all_trades_profitability.parquet')
"""
df2 = con.execute(query2).fetchdf()
logger.info("Got all data from all_trades_profitability.parquet")
query1 = f"""
SELECT *
FROM read_parquet('./data/tools.parquet')
"""
df1 = con.execute(query1).fetchdf()
logger.info("Got all data from tools.parquet")
con.close()
return df1, df2, df3, df4
def prepare_data():
"""
Prepare the data for the dashboard
"""
tools_df, trades_df, tools_accuracy_info, invalid_trades = get_all_data()
print(trades_df.info())
tools_df = prepare_tools(tools_df)
trades_df = prepare_trades(trades_df)
tools_accuracy_info = compute_weighted_accuracy(tools_accuracy_info)
print("weighted accuracy info")
print(tools_accuracy_info.head())
invalid_trades["creation_timestamp"] = pd.to_datetime(
invalid_trades["creation_timestamp"]
)
invalid_trades["creation_date"] = invalid_trades["creation_timestamp"].dt.date
# discovering outliers for ROI
outliers = trades_df.loc[trades_df["roi"] >= 1000]
if len(outliers) > 0:
outliers.to_parquet("./data/outliers.parquet")
trades_df = trades_df.loc[trades_df["roi"] < 1000]
return tools_df, trades_df, tools_accuracy_info, invalid_trades
tools_df, trades_df, tools_accuracy_info, invalid_trades = prepare_data()
trades_df = trades_df.sort_values(by="creation_timestamp", ascending=True)
demo = gr.Blocks()
# preparing data for the errors
error_by_markets = get_error_data_by_market(tools_df=tools_df, inc_tools=INC_TOOLS)
error_overall_by_markets = get_error_data_overall_by_market(error_df=error_by_markets)
winning_df = get_tool_winning_rate_by_market(tools_df, inc_tools=INC_TOOLS)
# preparing data for the trades graph
trades_count_df = get_overall_trades(trades_df=trades_df)
trades_by_market = get_overall_by_market_trades(trades_df=trades_df)
winning_trades_by_market = get_overall_winning_by_market_trades(trades_df=trades_df)
with demo:
gr.HTML("<h1>Olas Predict Actual Performance</h1>")
gr.Markdown(
"This app shows the actual performance of Olas Predict tools on the live market."
)
with gr.Tabs():
with gr.TabItem("π₯ Weekly Trades Dashboard"):
with gr.Row():
gr.Markdown("# Trend of weekly trades")
with gr.Row():
trades_by_week = integrated_plot_trades_per_market_by_week_v2(
trades_df=trades_df
)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown(
"# Weekly percentage of winning for π€ Agent based trades"
)
agent_winning_trades = (
integrated_plot_winning_trades_per_market_by_week_v2(
trades_df=trades_df, trader_filter="agent"
)
)
with gr.Column(scale=1):
gr.Markdown(
"# Weekly percentage of winning for Non-agent based trades"
)
non_agent_winning_trades = (
integrated_plot_winning_trades_per_market_by_week_v2(
trades_df=trades_df, trader_filter="non_agent"
)
)
def update_trade_details(trade_detail, trade_details_plot):
new_plot = plot_trade_metrics(
metric_name=trade_detail,
trades_df=trades_df,
)
return new_plot
with gr.Row():
gr.Markdown("# βοΈ Weekly trading metrics for all trades")
with gr.Row():
trade_details_selector = gr.Dropdown(
label="Select a trade metric",
choices=trade_metric_choices,
value=default_trade_metric,
)
with gr.Row():
with gr.Column(scale=3):
trade_details_plot = plot_trade_metrics(
metric_name=default_trade_metric,
trades_df=trades_df,
)
with gr.Column(scale=1):
trade_details_text = get_trade_metrics_text()
trade_details_selector.change(
update_trade_details,
inputs=[trade_details_selector, trade_details_plot],
outputs=[trade_details_plot],
)
# Agentic traders graph
with gr.Row():
gr.Markdown("# Weekly trading metrics for trades coming from Agents π€")
with gr.Row():
trade_a_details_selector = gr.Dropdown(
label="Select a trade metric",
choices=trade_metric_choices,
value=default_trade_metric,
)
with gr.Row():
with gr.Column(scale=3):
a_trade_details_plot = plot_trade_metrics(
metric_name=default_trade_metric,
trades_df=trades_df,
trader_filter="agent",
)
with gr.Column(scale=1):
trade_details_text = get_trade_metrics_text()
def update_a_trade_details(trade_detail, trade_details_plot):
new_a_plot = plot_trade_metrics(
metric_name=trade_detail,
trades_df=trades_df,
trader_filter="agent",
)
return new_a_plot
trade_a_details_selector.change(
update_a_trade_details,
inputs=[trade_a_details_selector, a_trade_details_plot],
outputs=[a_trade_details_plot],
)
# Non-agentic traders graph
with gr.Row():
gr.Markdown(
"# Weekly trading metrics for trades coming from Non-agents"
)
with gr.Row():
trade_na_details_selector = gr.Dropdown(
label="Select a trade metric",
choices=trade_metric_choices,
value=default_trade_metric,
)
with gr.Row():
with gr.Column(scale=3):
na_trade_details_plot = plot_trade_metrics(
metric_name=default_trade_metric,
trades_df=trades_df,
trader_filter="non_agent",
)
with gr.Column(scale=1):
trade_details_text = get_trade_metrics_text()
def update_na_trade_details(trade_detail, trade_details_plot):
new_a_plot = plot_trade_metrics(
metric_name=trade_detail,
trades_df=trades_df,
trader_filter="non_agent",
)
return new_a_plot
trade_na_details_selector.change(
update_na_trade_details,
inputs=[trade_na_details_selector, na_trade_details_plot],
outputs=[na_trade_details_plot],
)
with gr.TabItem("π Staking traders"):
with gr.Row():
gr.Markdown("# Trades conducted at the Pearl markets")
with gr.Row():
staking_trades_by_week = plot_staking_trades_per_market_by_week(
trades_df=trades_df, market_creator="pearl"
)
with gr.Row():
gr.Markdown("# Trades conducted at the Quickstart markets")
with gr.Row():
staking_trades_by_week = plot_staking_trades_per_market_by_week(
trades_df=trades_df, market_creator="quickstart"
)
with gr.Row():
gr.Markdown("# Trades conducted irrespective of the market")
with gr.Row():
staking_trades_by_week = plot_staking_trades_per_market_by_week(
trades_df=trades_df, market_creator="all"
)
with gr.TabItem("π Tool Winning Dashboard"):
with gr.Row():
gr.Markdown("# All tools winning performance")
with gr.Row():
winning_selector = gr.Dropdown(
label="Select the tool metric",
choices=list(tool_metric_choices.keys()),
value=default_tool_metric,
)
with gr.Row():
# plot_tool_metrics
winning_plot = integrated_plot_tool_winnings_overall_per_market_by_week(
winning_df=winning_df,
winning_selector=default_tool_metric,
)
def update_tool_winnings_overall_plot(winning_selector):
return integrated_plot_tool_winnings_overall_per_market_by_week(
winning_df=winning_df, winning_selector=winning_selector
)
winning_selector.change(
update_tool_winnings_overall_plot,
inputs=winning_selector,
outputs=winning_plot,
)
with gr.Row():
winning_selector
with gr.Row():
winning_plot
with gr.Row():
gr.Markdown("# Winning performance by each tool")
with gr.Row():
sel_tool = gr.Dropdown(
label="Select a tool", choices=INC_TOOLS, value=INC_TOOLS[0]
)
with gr.Row():
tool_winnings_by_tool_plot = (
integrated_tool_winnings_by_tool_per_market(
wins_df=winning_df, tool=INC_TOOLS[0]
)
)
def update_tool_winnings_by_tool_plot(tool):
return integrated_tool_winnings_by_tool_per_market(
wins_df=winning_df, tool=tool
)
sel_tool.change(
update_tool_winnings_by_tool_plot,
inputs=sel_tool,
outputs=tool_winnings_by_tool_plot,
)
with gr.Row():
sel_tool
with gr.Row():
tool_winnings_by_tool_plot
with gr.TabItem("π― Tool Accuracy Dashboard"):
with gr.Row():
gr.Markdown("# Tools accuracy ranking")
with gr.Row():
gr.Markdown(
"The data used for this metric is from the past two months. This accuracy is computed based on right answers from the total requests received."
)
with gr.Row():
_ = plot_tools_accuracy_rotated_graph(tools_accuracy_info)
with gr.Row():
gr.Markdown("# Weighted accuracy ranking per tool")
with gr.Row():
gr.Markdown(
"This metric is an approximation to the real metric used by the trader since some parameters are only dynamically generated."
)
with gr.Row():
gr.Markdown(
"The data used for this metric is from the past two months. This metric is computed using both the tool accuracy and the volume of requests received by the tool. The minimum value of this custom metric is 0 and the maximum value is 1. The higher the better is the tool."
)
with gr.Row():
_ = plot_tools_weighted_accuracy_rotated_graph(tools_accuracy_info)
with gr.TabItem("β Invalid Markets Dashboard"):
with gr.Row():
gr.Markdown("# Daily distribution of invalid trades")
with gr.Row():
daily_trades = plot_daily_dist_invalid_trades(invalid_trades)
with gr.Row():
gr.Markdown("# Top markets with invalid trades")
with gr.Row():
top_invalid_markets = plot_top_invalid_markets(invalid_trades)
with gr.Row():
gr.Markdown("# Daily distribution of invalid markets")
with gr.Row():
invalid_markets = plotly_daily_nr_invalid_markets(invalid_trades)
with gr.TabItem("π₯ Tool Error Dashboard"):
with gr.Row():
gr.Markdown("# All tools errors")
with gr.Row():
error_overall_plot = plot_error_data_by_market(
error_all_df=error_overall_by_markets
)
with gr.Row():
gr.Markdown("# Error percentage per tool")
with gr.Row():
sel_tool = gr.Dropdown(
label="Select a tool", choices=INC_TOOLS, value=INC_TOOLS[0]
)
with gr.Row():
tool_error_plot = plot_tool_error_data_by_market(
error_df=error_by_markets, tool=INC_TOOLS[0]
)
def update_tool_error_plot(tool):
return plot_tool_error_data_by_market(
error_df=error_by_markets, tool=tool
)
sel_tool.change(
update_tool_error_plot, inputs=sel_tool, outputs=tool_error_plot
)
with gr.Row():
sel_tool
with gr.Row():
tool_error_plot
with gr.Row():
gr.Markdown("# Tools distribution of errors per week")
with gr.Row():
choices = (
error_overall_by_markets["request_month_year_week"]
.unique()
.tolist()
)
# sort the choices by the latest week to be on the top
choices = sorted(choices)
sel_week = gr.Dropdown(
label="Select a week", choices=choices, value=choices[-1]
)
with gr.Row():
week_error_plot = plot_week_error_data_by_market(
error_df=error_by_markets, week=choices[-1]
)
def update_week_error_plot(selected_week):
return plot_week_error_data_by_market(
error_df=error_by_markets, week=selected_week
)
sel_tool.change(
update_tool_error_plot, inputs=sel_tool, outputs=tool_error_plot
)
sel_week.change(
update_week_error_plot, inputs=sel_week, outputs=week_error_plot
)
with gr.Row():
sel_tool
with gr.Row():
tool_error_plot
with gr.Row():
sel_week
with gr.Row():
week_error_plot
with gr.TabItem("βΉοΈ About"):
with gr.Accordion("About Olas Predict"):
gr.Markdown(about_olas_predict)
with gr.Accordion("About this dashboard"):
gr.Markdown(about_this_dashboard)
demo.queue(default_concurrency_limit=40).launch()
|