File size: 18,115 Bytes
0edd51d
 
 
 
d5cdaf8
0edd51d
 
 
 
 
8a50ffc
793156d
d49eeee
d5cdaf8
 
d49eeee
 
 
fabbd5e
d5cdaf8
0edd51d
d5cdaf8
0edd51d
 
41548b6
89539f7
 
b6711e8
d49eeee
0382e35
d49eeee
 
 
0edd51d
89539f7
0edd51d
 
 
 
 
 
8a50ffc
89539f7
d49eeee
89539f7
 
 
 
 
 
 
 
 
 
d8fa9a9
d49eeee
 
 
d5cdaf8
0382e35
b6711e8
d49eeee
d5cdaf8
 
 
d49eeee
 
52ca30c
d49eeee
d5cdaf8
d49eeee
 
d5cdaf8
d49eeee
 
d5cdaf8
41548b6
d5cdaf8
d49eeee
ddb9a25
d49eeee
d5cdaf8
ddb9a25
 
d49eeee
d5cdaf8
ddb9a25
d49eeee
 
d5cdaf8
 
ddb9a25
 
d49eeee
 
ddb9a25
 
d49eeee
 
 
 
 
 
 
 
 
 
ddb9a25
 
d49eeee
 
ddb9a25
 
d5cdaf8
d49eeee
 
 
 
 
 
 
 
 
 
 
ddb9a25
 
d49eeee
b6711e8
d49eeee
 
 
 
 
 
 
 
ccb155c
0edd51d
d49eeee
0edd51d
 
 
 
 
 
 
d49eeee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89539f7
d49eeee
 
 
 
89539f7
 
 
 
d49eeee
89539f7
 
 
 
d49eeee
 
d5cdaf8
1e95d75
d5cdaf8
 
1e95d75
 
 
 
 
 
 
 
 
d5cdaf8
d49eeee
 
 
 
 
 
 
 
 
 
 
 
0edd51d
d5cdaf8
 
 
89539f7
d5cdaf8
f864b44
d5cdaf8
 
d49eeee
 
 
cbcf8c0
d5cdaf8
d49eeee
 
 
 
 
 
 
 
 
52ca30c
 
 
 
 
d49eeee
 
 
0edd51d
 
d5cdaf8
89539f7
0edd51d
 
 
 
89539f7
 
 
f864b44
d49eeee
 
d5cdaf8
 
d49eeee
 
89539f7
 
 
f864b44
d5cdaf8
89539f7
f864b44
 
 
 
d5cdaf8
89539f7
f864b44
 
 
 
d5cdaf8
89539f7
f864b44
 
 
 
89539f7
 
 
 
 
 
 
 
f864b44
 
89539f7
f864b44
 
 
 
0edd51d
f864b44
89539f7
f864b44
 
 
 
0edd51d
d5cdaf8
f864b44
89539f7
d5cdaf8
 
89539f7
 
 
 
 
d5cdaf8
f864b44
d5cdaf8
 
f864b44
 
 
d8fa9a9
89539f7
d49eeee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5cdaf8
 
 
 
 
 
 
 
89539f7
0edd51d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0382e35
 
 
 
 
 
 
b6711e8
 
 
 
 
 
 
d49eeee
 
 
 
 
 
 
d5cdaf8
0edd51d
d5cdaf8
 
0edd51d
 
 
d49eeee
 
 
 
 
 
 
 
 
 
 
 
 
 
0edd51d
59bd43d
 
 
 
 
 
 
 
0edd51d
 
 
 
 
 
 
59bd43d
 
 
 
 
 
 
 
 
 
 
 
 
d49eeee
 
 
d5cdaf8
0382e35
b6711e8
d49eeee
1ea0405
41548b6
 
d49eeee
 
52ca30c
d49eeee
d5cdaf8
d49eeee
 
d5cdaf8
d49eeee
 
59bd43d
0edd51d
89539f7
0edd51d
89539f7
 
ddb9a25
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
#!/usr/bin/env python

from __future__ import annotations

import requests
import os
import random

import gradio as gr
import numpy as np
import spaces
import torch
import cv2
from PIL import Image
from io import BytesIO
from diffusers.utils import load_image
from diffusers import StableDiffusionXLControlNetPipeline, StableDiffusionXLControlNetInpaintPipeline, ControlNetModel, AutoencoderKL, DiffusionPipeline, AutoPipelineForImage2Image, AutoPipelineForInpainting, UNet2DConditionModel
from controlnet_aux import HEDdetector

DESCRIPTION = "# Run any LoRA or SD Model"
if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>⚠️ This space is running on the CPU. This demo doesn't work on CPU 😞! Run on a GPU by duplicating this space or test our website for free and unlimited by <a href='https://squaadai.com'>clicking here</a>, which provides these and more options.</p>"

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1824"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
ENABLE_USE_LORA = os.getenv("ENABLE_USE_LORA", "1") == "1"
ENABLE_USE_LORA2 = os.getenv("ENABLE_USE_LORA2", "1") == "1"
ENABLE_USE_VAE = os.getenv("ENABLE_USE_VAE", "1") == "1"
ENABLE_USE_IMG2IMG = os.getenv("ENABLE_USE_IMG2IMG", "1") == "1"
ENABLE_USE_CONTROLNET = os.getenv("ENABLE_USE_CONTROLNET", "1") == "1"
ENABLE_USE_CONTROLNETINPAINT = os.getenv("ENABLE_USE_CONTROLNETINPAINT", "1") == "1"

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

@spaces.GPU
def generate(
    prompt: str = "",
    negative_prompt: str = "",
    prompt_2: str = "",
    negative_prompt_2: str = "",
    use_negative_prompt: bool = False,
    use_prompt_2: bool = False,
    use_negative_prompt_2: bool = False,
    seed: int = 0,
    width: int = 1024,
    height: int = 1024,
    guidance_scale_base: float = 5.0,
    num_inference_steps_base: int = 25,
    controlnet_conditioning_scale: float = 1,
    control_guidance_start: float = 0,
    control_guidance_end: float = 1,
    strength_img2img: float = 0.7,
    use_vae: bool = False,
    use_lora: bool = False,
    use_lora2: bool = False,
    model = 'stabilityai/stable-diffusion-xl-base-1.0',
    vaecall = 'madebyollin/sdxl-vae-fp16-fix',
    lora = '',
    lora2 = '',
    controlnet_model = 'diffusers/controlnet-canny-sdxl-1.0',
    lora_scale: float = 0.7,
    lora_scale2: float = 0.7,
    use_img2img: bool = False,
    use_controlnet: bool = False,
    use_controlnetinpaint: bool = False,
    url = '',
    controlnet_img = '',
    controlnet_inpaint = '',
):
    if torch.cuda.is_available():

        if not use_img2img:
            pipe = DiffusionPipeline.from_pretrained(model, safety_checker=None, requires_safety_checker=False, torch_dtype=torch.float16, device_map="balanced", low_cpu_mem_usage=True)
                        
            if use_vae:  
                vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16, device_map="balanced", low_cpu_mem_usage=True)
                pipe = DiffusionPipeline.from_pretrained(model, vae=vae, safety_checker=None, requires_safety_checker=False, torch_dtype=torch.float16, device_map="balanced", low_cpu_mem_usage=True)
                
        if use_img2img:
            pipe = AutoPipelineForImage2Image.from_pretrained(model, safety_checker=None, requires_safety_checker=False, torch_dtype=torch.float16, device_map="balanced", low_cpu_mem_usage=True)

            init_image = load_image(url)

            if use_vae:  
                vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16, device_map="balanced", low_cpu_mem_usage=True)
                pipe = AutoPipelineForImage2Image.from_pretrained(model, vae=vae, safety_checker=None, requires_safety_checker=False, torch_dtype=torch.float16, device_map="balanced", low_cpu_mem_usage=True)

        if use_controlnet:
            controlnet = ControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.float16, device_map="balanced", low_cpu_mem_usage=True)
            pipe = StableDiffusionXLControlNetPipeline.from_pretrained(model, safety_checker=None, requires_safety_checker=False, controlnet=controlnet, torch_dtype=torch.float16, device_map="balanced", low_cpu_mem_usage=True)

            image = load_image(controlnet_img)
            
            image = np.array(image)
            image = cv2.Canny(image, 250, 255)
            image = image[:, :, None]
            image = np.concatenate([image, image, image], axis=2)
            image = Image.fromarray(image)

            if use_vae:
                vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16, device_map="balanced", low_cpu_mem_usage=True)
                pipe = StableDiffusionXLControlNetPipeline.from_pretrained(model, safety_checker=None, requires_safety_checker=False, controlnet=controlnet, vae=vae, torch_dtype=torch.float16, device_map="balanced", low_cpu_mem_usage=True)
                
        if use_controlnetinpaint:
            controlnet = ControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.float16, device_map="balanced", low_cpu_mem_usage=True)
            pipe = StableDiffusionXLControlNetInpaintPipeline.from_pretrained(model, safety_checker=None, requires_safety_checker=False, controlnet=controlnet, torch_dtype=torch.float16, device_map="balanced", low_cpu_mem_usage=True)

            image_start = load_image(controlnet_img)
            image = load_image(controlnet_img)
            image_mask = load_image(controlnet_img2img)
            
            image = np.array(image)
            image = cv2.Canny(image, 100, 200)
            image = image[:, :, None]
            image = np.concatenate([image, image, image], axis=2)
            image = Image.fromarray(image)
            
            if use_vae:
                vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16, device_map="balanced", low_cpu_mem_usage=True)
                pipe = StableDiffusionXLControlNetInpaintPipeline.from_pretrained(model, safety_checker=None, requires_safety_checker=False, controlnet=controlnet, vae=vae, torch_dtype=torch.float16, device_map="balanced", low_cpu_mem_usage=True)
                
        if use_lora:
            pipe.load_lora_weights(lora, adapter_name="1")
            pipe.set_adapters("1", adapter_weights=[lora_scale])
            
        if use_lora2:
            pipe.load_lora_weights(lora, adapter_name="1")
            pipe.load_lora_weights(lora2, adapter_name="2")
            pipe.set_adapters(["1", "2"], adapter_weights=[lora_scale, lora_scale2])

    pipe.enable_model_cpu_offload()     
    generator = torch.Generator().manual_seed(seed)
    
    if not use_negative_prompt:
        negative_prompt = None  # type: ignore
    if not use_prompt_2:
        prompt_2 = None  # type: ignore
    if not use_negative_prompt_2:
        negative_prompt_2 = None  # type: ignore

    if use_controlnetinpaint:
        image = pipe(
            prompt=prompt,
            strength=strength_img2img,
            controlnet_conditioning_scale=controlnet_conditioning_scale,
            eta=0.0,
            mask_image=image_mask,
            image=image_start,
            control_image=image,
            negative_prompt=negative_prompt,
            width=width,
            height=height,
            guidance_scale=guidance_scale_base,
            num_inference_steps=num_inference_steps_base,
            generator=generator,
        ).images[0]
        return image
    if use_controlnet:
        image = pipe(
            prompt=prompt,
            controlnet_conditioning_scale=controlnet_conditioning_scale,
            control_guidance_start=control_guidance_start,
            control_guidance_end=control_guidance_end,
            image=image,
            negative_prompt=negative_prompt,
            prompt_2=prompt_2,
            width=width,
            height=height,
            negative_prompt_2=negative_prompt_2,
            guidance_scale=guidance_scale_base,
            num_inference_steps=num_inference_steps_base,
            generator=generator,
        ).images[0]
        return image
    elif use_img2img:
        images = pipe(
            prompt=prompt,
            image=init_image,
            strength=strength_img2img,
            negative_prompt=negative_prompt,
            prompt_2=prompt_2,
            negative_prompt_2=negative_prompt_2,
            width=width,
            height=height,
            guidance_scale=guidance_scale_base,
            num_inference_steps=num_inference_steps_base,
            generator=generator,
        ).images[0]
        return images
    else:
        return pipe(
            prompt=prompt,
            negative_prompt=negative_prompt,
            prompt_2=prompt_2,
            negative_prompt_2=negative_prompt_2,
            width=width,
            height=height,
            guidance_scale=guidance_scale_base,
            num_inference_steps=num_inference_steps_base,
            generator=generator,
        ).images[0]

with gr.Blocks(theme=gr.themes.Soft(), css="style.css") as demo:
    gr.HTML(
        "<p><center>πŸ“™ For any additional support, join our <a href='https://discord.gg/JprjXpjt9K'>Discord</a></center></p>"
    )
    gr.Markdown(DESCRIPTION, elem_id="description")
    with gr.Group():
        model = gr.Text(label='Model', placeholder='e.g. stabilityai/stable-diffusion-xl-base-1.0')
        vaecall = gr.Text(label='VAE', placeholder='e.g. madebyollin/sdxl-vae-fp16-fix')
        lora = gr.Text(label='LoRA 1', placeholder='e.g. nerijs/pixel-art-xl')
        lora2 = gr.Text(label='LoRA 2', placeholder='e.g. nerijs/pixel-art-xl')
        controlnet_model = gr.Text(label='Controlnet', placeholder='e.g diffusers/controlnet-canny-sdxl-1.0')
        lora_scale = gr.Slider(
                info="The closer to 1, the more it will resemble LoRA, but errors may be visible.",
                label="Lora Scale 1",
                minimum=0.01,
                maximum=1,
                step=0.01,
                value=0.7,
            )
        lora_scale2 = gr.Slider(
                info="The closer to 1, the more it will resemble LoRA, but errors may be visible.",
                label="Lora Scale 2",
                minimum=0.01,
                maximum=1,
                step=0.01,
                value=0.7,
            )
        url = gr.Text(label='URL (Img2Img)')
        controlnet_img = gr.Text(label='URL (Controlnet)', placeholder='e.g https://example.com/image.png')
        controlnet_inpaint = gr.Text(label='URL (Controlnet - IMG2IMG)', placeholder='e.g https://example.com/image.png')
        with gr.Row():
            prompt = gr.Text(
                placeholder="Input prompt",
                label="Prompt",
                show_label=False,
                max_lines=1,
                container=False,
            )
            run_button = gr.Button("Run", scale=0)
        result = gr.Image(label="Result", show_label=False)
    with gr.Accordion("Advanced options", open=False):
        with gr.Row():
            use_controlnet = gr.Checkbox(label='Use Controlnet', value=False, visible=ENABLE_USE_CONTROLNET)
            use_controlnetinpaint = gr.Checkbox(label='Use Controlnet Img2Img', value=False, visible=ENABLE_USE_CONTROLNETINPAINT)
            use_img2img = gr.Checkbox(label='Use Img2Img', value=False, visible=ENABLE_USE_IMG2IMG)
            use_vae = gr.Checkbox(label='Use VAE', value=False, visible=ENABLE_USE_VAE)
            use_lora = gr.Checkbox(label='Use Lora 1', value=False, visible=ENABLE_USE_LORA)
            use_lora2 = gr.Checkbox(label='Use Lora 2', value=False, visible=ENABLE_USE_LORA2)
            use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False)
            use_prompt_2 = gr.Checkbox(label="Use prompt 2", value=False)
            use_negative_prompt_2 = gr.Checkbox(label="Use negative prompt 2", value=False)
        negative_prompt = gr.Text(
            placeholder="Input Negative Prompt",
            label="Negative prompt",
            max_lines=1,
            visible=False,
        )
        prompt_2 = gr.Text(
            placeholder="Input Prompt 2",
            label="Prompt 2",
            max_lines=1,
            visible=False,
        )
        negative_prompt_2 = gr.Text(
            placeholder="Input Negative Prompt 2",
            label="Negative prompt 2",
            max_lines=1,
            visible=False,
        )

        seed = gr.Slider(
            label="Seed",
            minimum=0,
            maximum=MAX_SEED,
            step=1,
            value=0,
        )
        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
        with gr.Row():
            width = gr.Slider(
                label="Width",
                minimum=256,
                maximum=MAX_IMAGE_SIZE,
                step=32,
                value=1024,
            )
            height = gr.Slider(
                label="Height",
                minimum=256,
                maximum=MAX_IMAGE_SIZE,
                step=32,
                value=1024,
            )
            
        with gr.Row():
            guidance_scale_base = gr.Slider(
                info="Scale for classifier-free guidance",
                label="Guidance scale",
                minimum=1,
                maximum=20,
                step=0.1,
                value=5.0,
            )
        with gr.Row():
            num_inference_steps_base = gr.Slider(
                info="Number of denoising steps",
                label="Number of inference steps",
                minimum=10,
                maximum=100,
                step=1,
                value=25,
            )
        with gr.Row():
            controlnet_conditioning_scale = gr.Slider(
                info="controlnet_conditioning_scale",
                label="controlnet_conditioning_scale",
                minimum=0.01,
                maximum=2,
                step=0.01,
                value=1,
            )
        with gr.Row():
            control_guidance_start = gr.Slider(
                info="control_guidance_start",
                label="control_guidance_start",
                minimum=0.01,
                maximum=1,
                step=0.01,
                value=0,
            )
        with gr.Row():
            control_guidance_end = gr.Slider(
                info="control_guidance_end",
                label="control_guidance_end",
                minimum=0.01,
                maximum=1,
                step=0.01,
                value=1,
            )
        with gr.Row():
            strength_img2img = gr.Slider(
                info="Strength for Img2Img",
                label="Strength",
                minimum=0,
                maximum=1,
                step=0.01,
                value=0.7,
            )

    use_negative_prompt.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt,
        outputs=negative_prompt,
        queue=False,
        api_name=False,
    )
    use_prompt_2.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_prompt_2,
        outputs=prompt_2,
        queue=False,
        api_name=False,
    )
    use_negative_prompt_2.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt_2,
        outputs=negative_prompt_2,
        queue=False,
        api_name=False,
    )
    use_vae.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_vae,
        outputs=vaecall,
        queue=False,
        api_name=False,
    )
    use_lora.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_lora,
        outputs=lora,
        queue=False,
        api_name=False,
    )
    use_lora2.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_lora2,
        outputs=lora2,
        queue=False,
        api_name=False,
    )
    use_img2img.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_img2img,
        outputs=url,
        queue=False,
        api_name=False,
    )
    use_controlnet.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_controlnet,
        outputs=controlnet_img,
        queue=False,
        api_name=False,
    )
    use_controlnetinpaint.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_controlnetinpaint,
        outputs=controlnet_inpaint,
        queue=False,
        api_name=False,
    )

    gr.on(
        triggers=[
            prompt.submit,
            negative_prompt.submit,
            prompt_2.submit,
            negative_prompt_2.submit,
            run_button.click,
        ],
        fn=randomize_seed_fn,
        inputs=[seed, randomize_seed],
        outputs=seed,
        queue=False,
        api_name=False,
    ).then(
        fn=generate,
        inputs=[
            prompt,
            negative_prompt,
            prompt_2,
            negative_prompt_2,
            use_negative_prompt,
            use_prompt_2,
            use_negative_prompt_2,
            seed,
            width,
            height,
            guidance_scale_base,
            num_inference_steps_base,
            controlnet_conditioning_scale,
            control_guidance_start,
            control_guidance_end,
            strength_img2img,
            use_vae,
            use_lora,
            use_lora2,
            model,
            vaecall,
            lora,
            lora2,
            controlnet_model,
            lora_scale,
            lora_scale2,
            use_img2img,
            use_controlnet,
            use_controlnetinpaint,
            url,
            controlnet_img,
            controlnet_inpaint,
        ],
        outputs=result,
        api_name="run",
    )

if __name__ == "__main__":
    demo.queue(max_size=20, default_concurrency_limit=2).launch()