File size: 12,708 Bytes
4ef990b e1fb3b2 f973312 e0bdeef a548a89 25b6c4d e0bdeef f0cbaa0 70448af e0bdeef 580f8c8 3522bb9 580f8c8 a548a89 f973312 3522bb9 a548a89 f973312 a548a89 580f8c8 54c24d5 e1fb3b2 e0bdeef 580f8c8 f973312 70448af f973312 580f8c8 a548a89 f0cbaa0 70448af f973312 580f8c8 c2a5b7b 580f8c8 c2a5b7b f973312 580f8c8 f973312 580f8c8 f973312 70448af 580f8c8 70448af f0cbaa0 a548a89 70448af f0cbaa0 70448af 580f8c8 a548a89 580f8c8 f973312 580f8c8 f973312 580f8c8 f973312 580f8c8 f973312 731f155 e1fb3b2 c2a5b7b 70448af a548a89 54c24d5 70448af f973312 fe937b3 c2a5b7b 580f8c8 c2a5b7b 3522bb9 c2a5b7b a548a89 580f8c8 fe937b3 e1fb3b2 580f8c8 fe937b3 580f8c8 4dbc7c0 a548a89 54c24d5 580f8c8 a548a89 e0bdeef a548a89 580f8c8 a548a89 54c24d5 a548a89 fe937b3 a548a89 fe937b3 70448af f973312 70448af fe937b3 a548a89 fe937b3 580f8c8 3522bb9 580f8c8 3522bb9 fe937b3 a548a89 25b6c4d a548a89 fe937b3 731f155 a548a89 731f155 a548a89 fe937b3 a548a89 fe937b3 a548a89 fe937b3 a548a89 731f155 a548a89 fe937b3 4dbc7c0 731f155 580f8c8 731f155 fe937b3 731f155 6ed2a87 f0cbaa0 580f8c8 3522bb9 6ed2a87 fe937b3 580f8c8 3522bb9 fe937b3 4dbc7c0 6ed2a87 fe937b3 580f8c8 fe937b3 580f8c8 6ed2a87 fe937b3 580f8c8 fe937b3 580f8c8 e1fb3b2 a548a89 6ed2a87 e1fb3b2 a548a89 e1fb3b2 a548a89 e1fb3b2 a548a89 e1fb3b2 a548a89 e1fb3b2 4ef990b 731f155 580f8c8 731f155 3522bb9 f0cbaa0 fe937b3 e0bdeef a548a89 e0bdeef 3522bb9 580f8c8 e0bdeef a548a89 70448af 4ef990b fe937b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import logging
from typing import List, Dict
import gc
import os
# Setup logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Set environment variables for memory optimization
os.environ['TRANSFORMERS_CACHE'] = '/home/user/.cache/huggingface/hub'
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
class HealthAssistant:
def __init__(self):
self.model_id = "microsoft/Phi-2" # Using smaller Phi-2 model
self.model = None
self.tokenizer = None
self.pipe = None
self.metrics = []
self.medications = []
self.device = "cpu"
self.is_model_loaded = False
self.max_history_length = 2
def initialize_model(self):
try:
if self.is_model_loaded:
return True
logger.info(f"Loading model: {self.model_id}")
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_id,
trust_remote_code=True,
model_max_length=256,
padding_side="left"
)
logger.info("Tokenizer loaded")
self.model = AutoModelForCausalLM.from_pretrained(
self.model_id,
torch_dtype=torch.float32,
trust_remote_code=True,
device_map=None,
low_cpu_mem_usage=True
).to(self.device)
gc.collect()
self.pipe = pipeline(
"text-generation",
model=self.model,
tokenizer=self.tokenizer,
device=self.device,
model_kwargs={"low_cpu_mem_usage": True}
)
self.is_model_loaded = True
logger.info("Model initialized successfully")
return True
except Exception as e:
logger.error(f"Error in model initialization: {str(e)}")
raise
def unload_model(self):
if hasattr(self, 'model') and self.model is not None:
del self.model
self.model = None
if hasattr(self, 'pipe') and self.pipe is not None:
del self.pipe
self.pipe = None
if hasattr(self, 'tokenizer') and self.tokenizer is not None:
del self.tokenizer
self.tokenizer = None
self.is_model_loaded = False
gc.collect()
logger.info("Model unloaded successfully")
def generate_response(self, message: str, history: List = None) -> str:
try:
if not self.is_model_loaded:
self.initialize_model()
message = message[:200] # Truncate long messages
prompt = self._prepare_prompt(message, history[-self.max_history_length:] if history else None)
generation_args = {
"max_new_tokens": 200,
"return_full_text": False,
"temperature": 0.7,
"do_sample": True,
"top_k": 50,
"top_p": 0.9,
"repetition_penalty": 1.1,
"num_return_sequences": 1,
"batch_size": 1
}
output = self.pipe(prompt, **generation_args)
response = output[0]['generated_text']
gc.collect()
return response.strip()
except Exception as e:
logger.error(f"Error generating response: {str(e)}")
return "I apologize, but I encountered an error. Please try again."
def _prepare_prompt(self, message: str, history: List = None) -> str:
prompt_parts = [
"Medical AI assistant. Be professional, include disclaimers.",
self._get_health_context()
]
if history:
for h in history:
if isinstance(h, dict): # New message format
if h['role'] == 'user':
prompt_parts.append(f"Human: {h['content'][:100]}")
else:
prompt_parts.append(f"Assistant: {h['content'][:100]}")
else: # Old format (tuple)
prompt_parts.extend([
f"Human: {h[0][:100]}",
f"Assistant: {h[1][:100]}"
])
prompt_parts.extend([
f"Human: {message}",
"Assistant:"
])
return "\n".join(prompt_parts)
def _get_health_context(self) -> str:
if not self.metrics and not self.medications:
return "No health data"
context = []
if self.metrics:
latest = self.metrics[-1]
context.append(f"Metrics: W:{latest['Weight']}kg S:{latest['Steps']} Sl:{latest['Sleep']}h")
if self.medications:
meds = [f"{m['Medication']}({m['Dosage']}@{m['Time']})" for m in self.medications[-2:]]
context.append("Meds: " + ", ".join(meds))
return " | ".join(context)
def add_metrics(self, weight: float, steps: int, sleep: float) -> bool:
try:
if len(self.metrics) >= 5:
self.metrics.pop(0)
self.metrics.append({
'Weight': weight,
'Steps': steps,
'Sleep': sleep
})
return True
except Exception as e:
logger.error(f"Error adding metrics: {e}")
return False
def add_medication(self, name: str, dosage: str, time: str, notes: str = "") -> bool:
try:
if len(self.medications) >= 5:
self.medications.pop(0)
self.medications.append({
'Medication': name,
'Dosage': dosage,
'Time': time,
'Notes': notes
})
return True
except Exception as e:
logger.error(f"Error adding medication: {e}")
return False
class GradioInterface:
def __init__(self):
try:
logger.info("Initializing Health Assistant...")
self.assistant = HealthAssistant()
logger.info("Health Assistant initialized successfully")
except Exception as e:
logger.error(f"Failed to initialize Health Assistant: {e}")
raise
def chat_response(self, message: str, history: List) -> tuple:
if not message.strip():
return "", history
try:
response = self.assistant.generate_response(message, history)
# Convert to new message format
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": response})
if len(history) % 3 == 0:
self.assistant.unload_model()
return "", history
except Exception as e:
logger.error(f"Error in chat response: {e}")
return "", history + [
{"role": "user", "content": message},
{"role": "assistant", "content": "I apologize, but I encountered an error. Please try again."}
]
def add_health_metrics(self, weight: float, steps: int, sleep: float) -> str:
if not all([weight is not None, steps is not None, sleep is not None]):
return "β οΈ Please fill in all metrics."
if weight <= 0 or steps < 0 or sleep < 0:
return "β οΈ Please enter valid positive numbers."
if self.assistant.add_metrics(weight, steps, sleep):
return f"""β
Health metrics saved successfully!
β’ Weight: {weight} kg
β’ Steps: {steps}
β’ Sleep: {sleep} hours"""
return "β Error saving metrics."
def add_medication_info(self, name: str, dosage: str, time: str, notes: str) -> str:
if not all([name, dosage, time]):
return "β οΈ Please fill in all required fields."
if self.assistant.add_medication(name, dosage, time, notes):
return f"""β
Medication added successfully!
β’ Medication: {name}
β’ Dosage: {dosage}
β’ Time: {time}
β’ Notes: {notes if notes else 'None'}"""
return "β Error adding medication."
def create_interface(self):
with gr.Blocks(title="Medical Health Assistant") as demo:
gr.Markdown("""
# π₯ Medical Health Assistant
This AI assistant provides general health information and guidance.
""")
with gr.Tabs():
with gr.Tab("π¬ Medical Consultation"):
chatbot = gr.Chatbot(
value=[],
height=400,
label=False,
type="messages" # Using new message format
)
with gr.Row():
msg = gr.Textbox(
placeholder="Ask your health question...",
lines=1,
label=False,
scale=9
)
send_btn = gr.Button("Send", scale=1)
clear_btn = gr.Button("Clear Chat")
with gr.Tab("π Health Metrics"):
gr.Markdown("### Track Your Health Metrics")
with gr.Row():
weight_input = gr.Number(
label="Weight (kg)",
minimum=0,
maximum=500
)
steps_input = gr.Number(
label="Steps",
minimum=0,
maximum=100000
)
sleep_input = gr.Number(
label="Hours Slept",
minimum=0,
maximum=24
)
metrics_btn = gr.Button("Save Metrics")
metrics_status = gr.Markdown()
with gr.Tab("π Medication Manager"):
gr.Markdown("### Track Your Medications")
med_name = gr.Textbox(
label="Medication Name",
placeholder="Enter medication name"
)
with gr.Row():
med_dosage = gr.Textbox(
label="Dosage",
placeholder="e.g., 500mg"
)
med_time = gr.Textbox(
label="Time",
placeholder="e.g., 9:00 AM"
)
med_notes = gr.Textbox(
label="Notes (optional)",
placeholder="Additional instructions or notes"
)
med_btn = gr.Button("Add Medication")
med_status = gr.Markdown()
msg.submit(self.chat_response, [msg, chatbot], [msg, chatbot])
send_btn.click(self.chat_response, [msg, chatbot], [msg, chatbot])
clear_btn.click(lambda: [], None, chatbot)
metrics_btn.click(
self.add_health_metrics,
inputs=[weight_input, steps_input, sleep_input],
outputs=[metrics_status]
)
med_btn.click(
self.add_medication_info,
inputs=[med_name, med_dosage, med_time, med_notes],
outputs=[med_status]
)
gr.Markdown("""
### β οΈ Medical Disclaimer
This AI assistant provides general health information only. Not a replacement for professional medical advice.
Always consult healthcare professionals for medical decisions.
""")
demo.queue(max_size=5)
return demo
def main():
try:
interface = GradioInterface()
demo = interface.create_interface()
demo.launch(
server_name="0.0.0.0",
show_error=True,
share=True
)
except Exception as e:
logger.error(f"Error starting application: {e}")
raise
if __name__ == "__main__":
main() |