Datasets:

Modalities:
Tabular
Text
Formats:
csv
DOI:
Libraries:
Datasets
pandas
License:
xaviergillard commited on
Commit
acddb18
1 Parent(s): a4cff4d

initial commit

Browse files
README.md CHANGED
@@ -3,6 +3,32 @@ license: bsd
3
  language:
4
  - nl
5
  - fr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  ---
7
  # Brabant XVII
8
 
 
3
  language:
4
  - nl
5
  - fr
6
+ configs:
7
+ - config_name: line_by_line
8
+ data_files:
9
+ - split: train
10
+ path : "data/line_by_line/train.csv"
11
+ - split: test
12
+ path : "data/line_by_line/test.csv"
13
+ - split: valid
14
+ path : "data/line_by_line/valid.csv"
15
+ default: true
16
+ - config_name: page_by_page
17
+ data_files:
18
+ - split: train
19
+ path : "data/page_by_page/train.csv"
20
+ - split: test
21
+ path : "data/page_by_page/test.csv"
22
+ - split: valid
23
+ path : "data/page_by_page/valid.csv"
24
+ - config_name: doc_by_doc
25
+ data_files:
26
+ - split: train
27
+ path : "data/doc_by_doc/train.csv"
28
+ - split: test
29
+ path : "data/doc_by_doc/test.csv"
30
+ - split: valid
31
+ path : "data/doc_by_doc/valid.csv"
32
  ---
33
  # Brabant XVII
34
 
data/doc_by_doc/test.csv ADDED
The diff for this file is too large to render. See raw diff
 
data/doc_by_doc/train.csv ADDED
The diff for this file is too large to render. See raw diff
 
data/doc_by_doc/valid.csv ADDED
The diff for this file is too large to render. See raw diff
 
data/full_corpus.csv ADDED
The diff for this file is too large to render. See raw diff
 
data/line_by_line/test.csv ADDED
The diff for this file is too large to render. See raw diff
 
data/line_by_line/train.csv ADDED
The diff for this file is too large to render. See raw diff
 
data/line_by_line/valid.csv ADDED
The diff for this file is too large to render. See raw diff
 
data/page_by_page/test.csv ADDED
The diff for this file is too large to render. See raw diff
 
data/page_by_page/train.csv ADDED
The diff for this file is too large to render. See raw diff
 
data/page_by_page/valid.csv ADDED
The diff for this file is too large to render. See raw diff
 
todataset.py ADDED
@@ -0,0 +1,179 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import os.path as path
3
+ import unittest
4
+ import pandas as pd
5
+
6
+ from tokenizers import Regex, NormalizedString
7
+ from tokenizers.normalizers import Sequence, NFKC, Replace, BertNormalizer, Strip
8
+
9
+ from datasets import Dataset
10
+
11
+ class CustomNormalizer:
12
+ def __init__(self):
13
+ self.normalization = Sequence([
14
+ NFKC(),
15
+ Replace("[", ""), # les annotations sont tellement inconsistantes pour les [] et le () que
16
+ Replace("(", ""), # que je pense qu'il vaut mieux tout virer et ls considérer tous pareil
17
+ Replace("]", ""),
18
+ Replace(")", ""),
19
+ Replace("\r\n", ""),
20
+ Replace(Regex(r"\s{2,}"), " "),
21
+ BertNormalizer(clean_text=True, handle_chinese_chars=True, strip_accents=True, lowercase=True),
22
+ Strip()
23
+ ])
24
+
25
+ def normalize(self, text: NormalizedString):
26
+ return self.normalization.normalize(text)
27
+
28
+ def normalize_str(self, sequence: str):
29
+ return self.normalization.normalize_str(sequence)
30
+
31
+
32
+ class TestNormalizer(unittest.TestCase):
33
+ def test_it_normalizes_in_place(self):
34
+ norm = CustomNormalizer()
35
+ actual = NormalizedString("coucou[[[xavier")
36
+ norm.normalize(actual)
37
+ expected = "coucouxavier"
38
+ self.assertEqual(actual.normalized, expected)
39
+
40
+ def test_it_removes_opening_bracket(self):
41
+ norm = CustomNormalizer()
42
+ actual = norm.normalize_str("coucou[[[xavier")
43
+ expected = "coucouxavier"
44
+ self.assertEqual(actual, expected)
45
+
46
+ def test_it_removes_closing_bracket(self):
47
+ norm = CustomNormalizer()
48
+ actual = norm.normalize_str("coucou]]]xavier")
49
+ expected = "coucouxavier"
50
+ self.assertEqual(actual, expected)
51
+
52
+ def test_it_removes_both_brackets(self):
53
+ norm = CustomNormalizer()
54
+ actual = norm.normalize_str("coucou[[[-]]]xavier")
55
+ expected = "coucou-xavier"
56
+ self.assertEqual(actual, expected)
57
+
58
+ def test_it_lowertcases_text(self):
59
+ norm = CustomNormalizer()
60
+ actual = norm.normalize_str("CouCou Xavier")
61
+ expected = "coucou xavier"
62
+ self.assertEqual(actual, expected)
63
+
64
+ def test_it_replaces_long_sequences_of_whitespaces(self):
65
+ norm = CustomNormalizer()
66
+ actual = norm.normalize_str("coucou xavier")
67
+ expected = "coucou xavier"
68
+ self.assertEqual(actual, expected)
69
+ #
70
+ actual = norm.normalize_str("coucou xavier")
71
+ expected = "coucou xavier"
72
+ self.assertEqual(actual, expected)
73
+ #
74
+ actual = norm.normalize_str("coucou \txavier")
75
+ expected = "coucou xavier"
76
+ self.assertEqual(actual, expected)
77
+
78
+ def test_it_normalizes_funky_chars(self):
79
+ norm = CustomNormalizer()
80
+ actual = norm.normalize_str("coucou xavier")
81
+ expected = "coucou xavier"
82
+ self.assertEqual(actual, expected)
83
+ #
84
+ actual = norm.normalize_str("coucou xavier")
85
+ expected = "coucou xavier"
86
+ self.assertEqual(actual, expected)
87
+ #
88
+ actual = norm.normalize_str("coucou \txavier")
89
+ expected = "coucou xavier"
90
+ self.assertEqual(actual, expected)
91
+
92
+
93
+ def file_to_pandas(project, fname):
94
+ norm = CustomNormalizer()
95
+ file_id = path.basename(fname)
96
+ page_id = 0
97
+ line_id = 0
98
+ df_dict = {
99
+ "project": [],
100
+ "file_id": [],
101
+ "page_id": [],
102
+ "line_id": [],
103
+ "text" : []
104
+ }
105
+ #
106
+ with open(fname, encoding="utf8") as f:
107
+ for line in f.readlines():
108
+ line = NormalizedString(line)
109
+ norm.normalize(line)
110
+ line = line.normalized
111
+ #
112
+ if not line: # emptystring is seen as false
113
+ pass
114
+ elif line == "###":
115
+ page_id += 1
116
+ else:
117
+ line_id += 1
118
+ df_dict["project"].append(project)
119
+ df_dict["file_id"].append(file_id)
120
+ df_dict["page_id"].append(page_id)
121
+ df_dict["line_id"].append(line_id)
122
+ df_dict["text"] .append(line)
123
+ #
124
+ return pd.DataFrame.from_dict(df_dict)
125
+
126
+ def text(df):
127
+ return "\n".join(df["text"].to_list())
128
+
129
+ def documents_text(df: pd.DataFrame):
130
+ '''
131
+ This function returns a dataframe equivalent to the original 'df'. However, the returned dataframe
132
+ loses the page and line information so as to retrieve the complete text of each documents pertaining
133
+ to the dataset
134
+
135
+ # Params
136
+ - df is a pandas dataframe
137
+ '''
138
+ groups = df.groupby(["project", "file_id"])
139
+ data = [(project, file_id, text(groups.get_group((project, file_id)).sort_values(["page_id", "line_id"]))) for (project, file_id),_v in groups ]
140
+ return pd.DataFrame.from_records(data, columns=["project", "file_id", "text"])
141
+
142
+ def pages_text(df: pd.DataFrame):
143
+ '''
144
+ This function returns a dataframe equivalent to the original 'df'. However, the returned dataframe
145
+ loses the line information so as to retrieve the complete text of each page of processed data.s
146
+
147
+ # Params
148
+ - df is a pandas dataframe
149
+ '''
150
+ groups = df.groupby(["project", "file_id", "page_id"])
151
+ data = [(project, file_id, page_id, text(groups.get_group((project, file_id, page_id)).sort_values("line_id"))) for (project, file_id, page_id),_v in groups ]
152
+ return pd.DataFrame.from_records(data, columns=["project", "file_id","page_id", "text"])
153
+
154
+ def prepare(df: pd.DataFrame, config_name: str):
155
+ ds = Dataset.from_pandas(df)
156
+ splits = ds.train_test_split(train_size=0.8, shuffle=True)
157
+ train = splits["train"]
158
+ test = splits["test"]
159
+ splits = train.train_test_split(train_size=0.8)
160
+ train = splits["train"]
161
+ valid = splits["test"]
162
+ train.to_csv("data/{config}/train.csv".format(config=config_name))
163
+ test .to_csv("data/{config}/test.csv".format(config=config_name))
164
+ valid.to_csv("data/{config}/valid.csv".format(config=config_name))
165
+
166
+ if __name__ == '__main__':
167
+ #pth= r'C:\Users\xavier.gillard\Documents\ARKEY\data'
168
+ #prj= "pardons"
169
+ #df = pd.concat([file_to_pandas(prj, path.join(pth, f)) for f in os.listdir(path=pth)], axis=0, ignore_index=True)
170
+ #df.to_csv("data/full_corpus.csv", index=False)
171
+
172
+ df = pd.read_csv("data/full_corpus.csv")
173
+ lines = df[["text"]]
174
+ docs = documents_text(df)[["text"]]
175
+ pages = pages_text(df)[["text"]]
176
+
177
+ prepare(lines, "line_by_line")
178
+ prepare(pages, "page_by_page")
179
+ prepare(docs, "doc_by_doc")